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Abstract:
The Pick’s formula and Euler's theorem exhibits beautiful relationships between the number of
fundamental units of any figure to the area and the number of triangles contained in it. This paper
presents the general overview on these formulae and proposes a modified version of Euler's
theorem.
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1. Some Definitions
Here are some of the definitions used ahead in the paper:

a. Polygons:
A polygon is any closed figure whose area can be calculated.

b. Edges:
Edges are line segments which individually or in combination with other line

segments form a polygon.

c. Vertices:
Vertices are the points at which two or more edges meet with each other.

d. Faces:
Faces are surfaces that are enclosed by edges on all the sides.

e. Convex Polygons:
When the line segment joining any two points in the inside of a polygon remain in

inside of the polygon, the polygon is called a convex polygon.

f. Concave Polygons:
Any polygon that is not a convex polygon is called a concave polygon.

g. Triangle:
A figure formed by any three non-collinear points joined together with straight

line segments is called triangles.

h. Elementary Triangle:
Any triangle that has no internal points and the vertices are the only boundary

points they have. A special case of an elementary triangle is when these vertices are
integral lattice points and in this case, the area of such a triangle is half.

2. Triangulation in Polygons

Theorem 1. Any n-sided polygon can be triangulated into elementary triangles.

Proof:
Base Case: No. of sides = 2



Let’s assume two line segments AB and BC meeting at point B.

For this case, the vertices A and C can be connected to form an elementary triangle (from
def n ).

∴ Base case of no. of sides = 2 is true.

Inductive Case: Let there be a n-sided polygon (a) and let’s assume that triangulation
works for (a).

Now, let’s add an extra edge AB from any vertex A in (a). This results in the figure:

Note that there exists at least one point C such that when B and C are joined with a line
segment, an elementary triangle ABC, let’s call it (b), is formed.



We already know that triangulation is possible in (a), and from the above step, we know
that triangulation is true in (b). This implies that triangulation is true for the entire
polygon consisting of both (a) and (b).

∴ Inductive case is also true.

Altogether, by the principle of mathematical induction, triangulation is true for any
n-sided polygon. ⃞⃞

2.1 Algorithm for Triangulation
Let’s consider a polygon P for triangulation. Then here is the algorithm for the
triangulation of P:

STEP: 1 Label all the vertices of P. Let’s say there are n vertices in V = {1, 2, 3,
…, n}.
STEP: 2 Start at any one of the vertices, let’s say 1, and find one point x V such∈
that the distance between the points is exactly 2 and when joined with one another
using a line segment, the line segment remains completely within P without
intersections with any other existing edge/line segment. Now, join them.
STEP: 3 Repeat STEP 2 until there exists no vertice x (where is the set of∈ 𝑉' 𝑉'
all the vertices of P including the newly formed ones from STEP 2), such that the
conditions mentioned in STEP 2 are satisfied.
STEP: 4 Now, move to the one of the adjacent vertices ie. vertices with a distance
of one, and repeat STEP 2 and STEP 3 for this point.
STEP 5: Repeat STEP 4 until all the vertices are covered.

: The distance between two vertices in a polygon is the number of edges between𝐷𝑒𝑓 𝑛

the two vertices.

Here is an example showing the above algorithm:





3. Pick’s Formula

3.1 Pick’s Formula in 2-D

Theorem 2. For any n-sided polygon in 2-D with lattice points as vertices, the
relationship between the number of boundary points (B), number of internal points
(I), and area of the polygon can be given by:

𝐴 =  𝐼 +  𝐵
2  −  1

…(i)

Proof:
From Theorem 1., we know any polygon can be triangulated and the least number of
triangulations achievable is T = 1. Thus:

Base Case: T = 1



For T = 1, I = 0 and B = 3. From eq.(i),
𝐴 =  𝐼 +  𝐵

2  −  1

𝐴 =  0 +  3
2  −  1

𝐴 =  1
2

And from fig.1, b = 1 and h = 1, then:
𝐴 = 1

2 · 𝑏 · ℎ

𝐴 = 1
2 · 1 · 1

𝐴 = 1
2

∴ Base case of T = 1, is true.

Inductive Case: Let there be two polygons P and Q with arbitrary number of
boundary and internal points. Let there be n common points between the two figures.

Assuming the formula is true for figures P and Q, we need to show that it is true for
the big figure PQ. From eq.(i):

𝐴(𝑃) = 𝐼
𝑝
 +  

𝐵
𝑝

2  −  1 

𝐴(𝑄) = 𝐼
𝑞
 +  

𝐵
𝑞

2  −  1 

From fig. 4:
𝐼

𝑝𝑞
 =  𝐼

𝑝
+ 𝐼

𝑞
+ (𝑛 − 2)

𝐵
𝑝𝑞

 =  𝐵
𝑝

+ 𝐵
𝑞

− 2(𝑛 − 2) − 2



then, from eq.(i):

𝐴(𝑃𝑄) = 𝐼
𝑝

+ 𝐼
𝑞

+ (𝑛 − 2) +  
𝐵

𝑝
 + 𝐵

𝑞
 − 2(𝑛−2) − 2

2  −  1 

𝐴(𝑃𝑄) = 𝐼
𝑝

+ 𝐼
𝑞

+ (𝑛 − 2) −  (𝑛 − 2) +  
𝐵

𝑝
 + 𝐵

𝑞

2  −  1 − 1 

𝐴(𝑃𝑄) = 𝐼
𝑝

+ 𝐼
𝑞

+  
𝐵

𝑝

2 +
𝐵

𝑞

2  −  1 − 1 

𝐴(𝑃𝑄) = 𝐼
𝑝

+
𝐵

𝑝

2 − 1 + 𝐼
𝑞

+
𝐵

𝑞

2  − 1 

𝐴(𝑃𝑄) = 𝐴(𝑃) + 𝐴(𝑄)

∴ Inductive case is also true.

Altogether, by the principle of mathematical induction, the theorem is true for all
n-sided polygons. ⃞⃞

3.2 Exploring Pick’s Formula in 3-D
Upon some exploration, it can be quickly realized that in a 3D lattice plane, to find
the volume of a 3-D figure, one needs 3 variables instead of two. Let these variables
be I for internal points, B for boundary points and F for face points. Then for
cuboidal figures, we can write the relationship between them as:

𝑉 = 𝐼 +  𝐵
4 + 𝐹

2  −  1 
…(ii)

4. Euler’s Theorem

4.1 Euler’s Theorem in 2-D

Theorem 3. For any n-sided polygon in 2-D, the relationship between the number of
edges (E), number of vertices (V), and number of triangles contained in the polygon
can be given by:

𝐸 =  𝑉 +  𝑇 −  1
…(iii)

Proof:
From Theorem 1., we know any polygon can be triangulated and the least number of
triangulations achievable is T = 1. Thus:



Base Case: T = 1

From fig. 5, by observation and definition of vertices and edges, it can be noted that
E = 3, V = 3 and T = 1. Then, from eq.(iii):

𝐸 =  𝑉 +  𝑇 −  1
3 =  3 +  1 −  1

3 =  3 +  0
3 =  3

∴ Base case of T = 1, is true.

Inductive Case: T = m is true⇒ T = m + 1 is true.

Let’s assume there exists a polygon having , and a triangulation𝐸 =  𝑒
𝑚

𝑉 =  𝑣
𝑚

such that T = m and eq.(iii) is true for the polygon. This implies:
𝐸 =  𝑉 +  𝑇 −  1

𝑒
𝑚

 =  𝑣
𝑚

 +  𝑚 −  1

is true.
…(iv)



Upon adding one extra triangle to the polygon, there is an increase in the number of
edges by two and an increase in the number of vertices by one, ie.,

𝐸 =  𝑒
𝑚

+ 2

𝑉 =  𝑣
𝑚

+ 1

𝑇 = 𝑚 + 1
Then:

𝐸 =  𝑉 +  𝑇 −  1
𝑒

𝑚
+ 2 =  (𝑣

𝑚
+ 1) +  (𝑚 + 1) −  1

𝑒
𝑚

+ 2 =  (𝑣
𝑚

+ 1) +  𝑚 + (1 −  1)

𝑒
𝑚

+ 2 =  (𝑣
𝑚

+ 1) +  𝑚 + 0

𝑒
𝑚

+ 2 =  (𝑣
𝑚

+ 1) +  𝑚

𝑒
𝑚

+ 2 =  𝑣
𝑚

+ (1 +  𝑚)

𝑒
𝑚

+ 2 =  𝑣
𝑚

+ (𝑚 +  1)

𝑒
𝑚

+ 2 =  (𝑣
𝑚

+ 𝑚) +  1

𝑒
𝑚

+ 2 − 2 =  (𝑣
𝑚

+ 𝑚) +  1 − 2

𝑒
𝑚

+ 0 =  (𝑣
𝑚

+ 𝑚) − 1

𝑒
𝑚

=  𝑣
𝑚

+ 𝑚 − 1

which is true according to eq.(iv).

∴ T = m is true⇒ T = m + 1 and the inductive case is also true.

Altogether, by the principle of mathematical induction, the theorem is true for all
n-sided polygons. ⃞⃞

4.2 Exploring Euler’s Theorem in 3-D
Translating the Euler’s Formula in 2-D to 3-D, we can say that the relationship
between the number of edges (E), the number of vertices (V), and the number of
faces (F) can be given by:

𝐸 =  𝑉 +  𝐹 −  2
…(v)

5. Modified Euler’s Theorem
5.1 Some Other Definitions

Here are some other definitions that are specific to this proposition:



a. Faces in 2-D:
A face in 2-D is defined as an area enclosed by edges, which is

separate from other areas. Here are some examples:

b. Stand-Alone Polygons:
If a polygon included in another polygon does not have any

intersection or overlapping with the outer polygon, it is called a
stand-alone polygon. Here are some examples:

c. Edges and Vertices in a Circle:
i. Stand-Alone Circles

Stand-alone circles will have infinite edges and infinite
vertices ie. E = V. To make this simpler, we can consider that each
stand-alone circle has one vertex and one edge. Here is an example
of a stand-alone circle:



ii. Other Circles
For any other circle that intersects with another polygon,

the number of vertices is equal to the number of points at which
the circle intersects with the polygon and number of edges is equal
to the number of line-segments between the vertices. Here are
some such examples:

5.2 The Theorem

Theorem 4. For any combination of one or more n-sided polygons in 2-D, the
relationship between the number of edges (E), number of vertices (V), number of
faces (F) and the number of stand-alone polygons (S) contained in the polygon can
be given by:

𝐸 =  𝑉 +  𝐹 − 𝑆 −  1
…(v)

Proof:
To prove eq.(v), let’s split the hypothesis into two cases:

Case (1): S = 0

Let’s say there exists a polygon such that it has number of edges, number𝑃
0

𝐸
0

𝑉
0

of vertices, number of faces and the number of stand-alone figures S = 0. Then,𝐹
0

from eq.(v) we get:
𝐸 =  𝑉 +  𝐹 − 𝑆 −  1

𝐸
0

=  𝑉
0
 +  𝐹

0
−  1



From Theorem 1., we know that any polygon can be triangulated and thus, can be𝑃
0

triangulated too. With every step in the triangulation algorithm, there is an increase
in the number of edges by one and an increase in the number of faces by one.

This implies, if there are p intersections, at the end of the triangulation algorithm,
there is an increase in the number of edges by p, an increase in the number of faces
by p and all the faces are now translated into triangles. Therefore:

𝐸
0

+ 𝑝 =  𝑉
0
 +  𝑇

0
+ 𝑝 −  1

𝐸
0

=  𝑉
0
 +  𝑇

0
−  1

which is true for any polygon according to Theorem 2.

Case (2): S ≠ 0

Let’s define a polygon such that it is made up of a n-sided polygon P containing𝑆
0

or intersecting other polygons such that none of them are stand-alone polygons.𝑄
𝑘

Let the number of intersections between a polygon and P be . Let the𝑄
𝑘

𝑛(𝑄
𝑘
)

number of edges in be , the number of vertices in be , the number of faces𝑆
0

𝐸
0

𝑆
0

𝑉
0

in be and the number of stand-alone polygons be zero. Then, from the case (1),𝑆
0

𝐹
0

we know that:
𝐸

0
=  𝑉

0
 +  𝐹

0
 −  1



It can be noted that there exists only two types of intersections in between the and𝑄
𝑖

P, and they are:
i. Intersections at Edges ( ):α

When intersects with P at one of the edges of P, then it is called𝑄
𝑘

an intersection at an edge.

ii. Intersections at Vertices :(β)
When intersects with P at one of the vertices of P, then it is𝑄

𝑘

called an intersection at an vertex.

Note that the total number of intersections for k > 0 polygons is:

= .
𝑖=1

𝑘

∑ 𝑛(𝑄
𝑖
) ( ) 𝑛(α) + 𝑛(β)

Let’s now convert all the k internal polygons into k stand-alone polygons. In𝑄
𝑘

order to do this, we need to disconnect the intersections that each internal polygon
and this results in some changes in the number of edges and vertices in the𝑄

𝑘

polygon .𝑆
0

In order to compute these changes, let’s consider each type of intersection separately.

Case (2.a): Intersections at Edges ( )α
In this case, every time we disconnect an internal polygon from P, the𝑄

𝑘

number of vertices remains the same while the number of edges reduces by one.
This is because every time we make an intersection on an edge, the edge is
divided in two, resulting in an extra edge and upon removing this intersection, the
number of edges goes back to the former count.

After all such intersections are disconnected, a new polygon is formed such𝑆
0

that the number of edges in it is , and the number of vertices in it𝐸
1

= 𝐸
0

− 𝑛(α)

is not affected.

Case (2.b): Intersections at Vertices (β)
In this case, every time we disconnect an internal polygon from P, the𝑄

𝑘

number of edges remains the same while the number of vertices increases by one.



This is because every time we make an intersection on a vertex, two different
vertices become the same and the number of vertices reduces by one. When this
intersection is disconnected, the number of vertices goes back to the former count.

After all such intersections are disconnected, a new polygon is formed such𝑆
0

that the number of vertices in it is , and the number of edges is𝑉
1

= 𝑉
0

+ 𝑛(β)

not affected.

Let’s now combine these two cases. Then, the new polygon is formed such that𝑆
1

the number of vertices , the number of edges in it is𝑉
1

= 𝑉
0

+ 𝑛(β)

.𝐸
1

= 𝐸
0

− 𝑛(α)

Now, let’s consider the changes in the number of faces in the polygon caused due𝑆
0

to the disconnection of the interior polygons. Every time an internal polygon with 𝑝
intersections is disconnected, then the number of faces is reduced by and𝑝 − 1
hence, when all k polygons are disconnected, the number of faces is reduced by:

.
𝑖=1

𝑘

∑ 𝑛(𝑄
𝑖
) − 1

Then, the number of faces in is:𝑆
1

𝐹
1

= 𝐹
0

−
𝑖=1

𝑘

∑ 𝑛(𝑄
𝑖
) − 1( )

𝐹
1

= 𝐹
0

− 𝑛(𝑄
1
) − 1( ) − 𝑛(𝑄

2
) − 1( ) −.  .  . − 𝑛(𝑄

𝑘
) − 1( )

𝐹
1

= 𝐹
0

−
𝑖=1

𝑘

∑ 𝑛(𝑄
𝑖
) ( ) + 𝑘

𝐹
1

= 𝐹
0

− 𝑛(α) + 𝑛(β)( ) + 𝑘

From the above deductions:
𝑉

1
= 𝑉

0
+ 𝑛(β)

𝐸
1

= 𝐸
0

− 𝑛(α)

𝐹
1

= 𝐹
0

− 𝑛(α) + 𝑛(β)( ) + 𝑘

𝐸
0

=  𝑉
0
 +  𝐹

0
 −  1

𝐸
0

− 𝑛(α) =  𝑉
0
 +  𝐹

0
 −  1 − 𝑛(α) + 𝑛(β) − 𝑛(β) + 𝑘 − 𝑘

𝐸
0

− 𝑛(α) =  𝑉
0
 + 𝑛(β) +  𝐹

0
− 𝑛(α) − 𝑛(β) + 𝑘 − 𝑘 −  1



𝐸
0

− 𝑛(α) =  𝑉
0
 + 𝑛(β) +  𝐹

0
− (𝑛(α) + 𝑛(β)) + 𝑘 −  1 − 𝑘

𝐸
1

= 𝑉
1
 +  𝐹

1
−  1 − 𝑘

where is the number of edges, is the number of vertices, is the number of𝐸
1

𝑉
1

𝐹
1

faces, and k is the number of stand-alone polygons contained within . Therefore,𝑆
1

the proposition is true for all k > 0. ⃞⃞
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