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Preface
Throughout my journey in mathematics, I've had the privilege of exploring diverse mathematical
concepts and theories, both within the structured environment of classrooms and through
independent study. This anthology comprises a collection of 6 research papers, each delving into
different branches of mathematics, ranging from algebra and complex numbers to geometry, number

theory.

Writing these articles has been instrumental in deepening my understanding of the intricacies of
various mathematical principles. It has not only honed my analytical skills but also reignited my
passion for the beauty and elegance inherent in mathematical structures and proofs. Each article in this
anthology is a testament to my fascination with the world of mathematics and my commitment to

sharing its wonders with fellow enthusiasts.

To everyone reading this anthology, I hope you have as much fun as I had writing each feature article in

here!



The Equability Factor

Abstract:

This project is our take on equable shapes and on the question: An eccentric artist says that the best
paintings have the same area as their perimeter numerically. Let us not argue whether such sizes
increase the viewer’s appreciation, but only try to find what sides - in integers only - a rectangle must

have if its area and perimeter are to be equal.

Introduction:

Ever heard of perfect shapes? Never?

Contrary to several people’s beliefs, perfect shapes do exist. Perfect shapes or equable shapes refer to
two dimensional shapes that have the same numerical perimeter and area. While in three dimensions, a
shape is called equable when its surface area is numerically equal to its volume.

For any given shape (all dimensions), there is always a similar equable shape!

For example, a circle with a radius of r = 2, has both a perimeter and area of 4w and a cube with side

length six has equal surface area and volume of 216.

Circumference = 2.m.r Surface area = 6.2*
=22 = 6.6
Area =m.r=w2"=4m Volume =2°=6>=216

While talking about areas and perimeters, it is important to consider the scaling and units. An area of a
shape cannot be equal to the perimeter except in a particular relative unit of measurement. For
example, if the shape has equal areas and perimeters while using yards, they might not maintain the

same equality when the unit is converted to meters or feet.

Moreover, this difference also tends to be contrary to what the name “equable” implies. Changing the
size while leaving the shape intact changes an ‘equable shape’ into a ‘non-equable shape’. To check this

difference, the use of integer dimensions becomes necessary.



While combining the restriction on integer dimensions to a shape being equable, the probability of

equable shapes becomes significantly more limited than either of the conditions on their own.

For instance, there are infinitely many Pythagorean triples that describe integer-sided right triangles,
and there are infinitely many equable right triangles having non-integer sides. However, there are only

two equable right triangles with integer dimensions.

In this project, we have set out to find equable rectangles while combining the restriction of exclusively
using integer dimensions. And here begins our quest to find out the 2 equable integer rectangles that

ever exist in the entire universe of shapes!

The Experiment - A Quadrilogue:
(An - Anicham; Ak - Akshitha; Ad - Adbvighaa; Sh - Shivani)

Ad - Let’s start by finding at least one that works.

Ak - Okay, let’s start with squares then.

An - What? Squares? All the sides are the same in squares. How do they become rectangles?

Sh - All squares have the properties of a rectangle! The opposite sides are parallel and equal to each
other, each interior angle is equal to 90 degrees, the sum of all the interior angles is equal to 360
degrees, the diagonals bisect each other, both the diagonals have the same length and so on. So, all
squares are rectangles! However, remember that all rectangles are not squares because unlike squares

rectangles don’t have all the sides equal to each other and don’t have diagonals that bisect each other

perpendicularly...
An - Ohh! I getit now. In that case, we can start with squares and see if they work.

Sh - Okay. Let’s make a table then.

[draws the following table]

Length of Side of Square = a Area = a’ Perimeter = 4a




1 1 4
2 4 8
3 9 12
4 16 16
5 25 20
6 36 24

An - We've got a winner! 4 works. Can any other squares work?

Ad - That may be the only one. The area is quickly getting larger than the perimeter as we increase the

length of the square...

Ak - Yes, once we pass the side length of 4, it does not seem possible for the perimeter to catch up with

the area.
Sh - Area's definitely winning that race! So, what’s next?

An - A table is more complicated for non-squares because of the two different measurements of length

and breadth.
Ak - Yeah... How are we going to make that work?
Ad - Well, let’s start with testing a few with trial and error? We’ll get some ideas after that for sure...

Sh - Yes, that makes sense. What about 2 and 3?
(2x3 rectangle drawing)

Ak - Nope! Perimeter of 10 and area of 6. Doesn’t work.
An - So, then what about 2 1/2 and 3? That’s a perimeter of 11 and area of 7 1/2 . That’s closer.

Ad - Let’s try using whole numbers first and see what happens.



An - Sure, let’s stick with those because our main goal is to use integer dimensions and make sure there

isn't an anomaly with respect to units.

Ak - Okay, let’s try 4 and 3... 4 times 3 is 12. 4 + 3 is 7, double that and we get 14.
(4x3 rectangle drawing)

An - Close!

Sh -5 times 3is 15. 5 + 3 is 8, double that is 16.
(5x3 rectangle drawing)

Ad - Even closer!
Ak - I'don’t think it will ever work if the area is 0dd, because the perimeter has to be even.

Sh - You’re right. After all, to find the perimeter, we add the two numbers and double the sum. It HAS

to be even.

An - Well, that’s odd!
[langhing at the joke made]

Ad - Okay, so we were close with 5 and 3, but we need an even product. How about 6 and 3 then?

Sh - 6 times 3 is 18. 6 + 3 is 9 and double 9 is 18.
(6x3 rectangle drawing)
Ak - Hooray! Another winner! We found one more! Is that all of them?
[There is a long pause during which everyone thinks about the problem.]
An - Idon’t know, but I don’t think so. What are we doing each time we try an example?

(axb rectangle drawing)



Sh - If we call the side lengths 2 and &, then area is  times & . [writes Area = ab | To find perimeter,
we’ve been adding 4 and & and then doubling that sum. [writes Perimeter = 2(« + b)] Then we want

the area and perimeter to be equal, so...

An - Oh, I'see. We need to find rectangles with sides lengths 2 and 4 that make the area 26 equal to the
perimeter, which is... [pauses to write ab = 2(a + b) ] ...twice the sum of 2 and & . Now we can solve for

a . We'll multiply first. [mumbles about the distributive property while writing the following]
Area = ab
Perimeter = 2(a+b)
If area and perimeter are equal then,
ab=2a+b)
ab=2a+2b
Ad - Then we can subtract 24 from both sides. And that will be.../writes the following]
ab—2a=2b
An - Right! And 2b minus 24 is the same as « times the quantity b minus 2. [writes the following]
a(b-2)=2b

Sh - Then you can divide both sides by & minus 2 such that you have only 2 on one side. [writes the

following]
a(b—2)=2b
a=(2b)b-2

Ak - Oh, so there are lots of rectangles!! We can plug in whatever side length we choose for & and we’ll

always get the length of side a.

Ad - Let’s try the two we’ve found so far. If you put 6 in for & you get 12/4 = 3, and that was our other

side length.

Sh - And if you put 4 in for & you get 8/2 = 4 as our other side length. Yup, it checks!



Ak - So, how many more rectangles are there that work? Can we really put any number in for & and it

will give us the  that works for it?

An - [after a brief pause] Sure. Like if you put in 10 as side length 4, that gives us

20/8 for a . So fora 2.5 x 10 rectangle, the area is 25 square units and the perimeter is 25 units.
Ad - Guess they are not all going to be our “whole” numbers are they?

Sh - Yeah, but not every number will work...

An - Exactly! For example, in case we had a side length of 1, we’ll get a negative value.

Ak - So basically, since 2 = (2b)/b-2 and a and b are measurement that are always greater than 0... [writes

the following]
b>0
b-2>0
b>2

...bis always greater than 2.

Ad - So, there are an infinite number of these rectangles but yet limited to certain restrictions?
An - Yes! You got that right!

Sh - Wait, if I am presuming this right, it might be possible to draw a graph for this.

Ak - Really? Let’s give it a try then. /draws the following graph]

27 ly=x/x-2)




An - So, according to this graph, if you continue halving the difference in lengths and subtracting this
and doubling the breadth and adding it on you can find many more rectangles with equal perimeter
and area.

Sh, Ak, Ad - Wait, what? You might want to walk us through this...

An - So ultimately, there is a pattern linking the length of the sides of successive equable rectang]es.
Starting at the square with sides 4 by 4 and then the rectangle with side length of 3 and breadth of 6...

The difference between the lengths 3 and 4 is 1, the difference between the breadths 4 and 6 is 2.

To get from 3 to the next length you halve the difference between 4 and 3 and subtract this from 3, to

get 2.5.

To get from 6 to the next breadth you double the difference between 4 and 6 and add this to 6, to get
10.

So, if you continue using this method you can find many more rectangles with equal perimeter and

area.

Ak - So, what you’re trying to say is:
L;=L,-(L, -L,)2
B;=B,+2(B,-B;)

An - Yes!

Sh - So, we’ll get 4 by 4, 3 by 6, 2.5 by 10, 2.25 by 18, 2.125 by 34 and so on?
An-YES!!

Ad - That’s amazing! I think we have reached our goal on solving this problem.

Ak - Yes, we have, haven’t we?



An, Sh - WE GUESS SO!!

Result:
According to the above conducted experiment, it has been found, through a trial and error process,

that there are only two rectangles which are both equable and have integral values for their lengths and

breadths.

The relationship between the length and the breadth has been found to be = (25)/b—2 where 4 is the
length and & is the breadth and the two equable rectangles have been found to have the dimensions 4

by 4 and 3 by 6 respectively.

In addition, a graph on the dimensions of equable rectangles has also been plotted. Thus, the

relationship between the dimensions of various equable rectangles have been determined to be L;=
L,-(L;-L,)/2and B;=B,+ 2(B,- B,) where L is the length and B is the breadth.

Conclusion:

With this ends our quest to find out the 2 equable integer rectangles - the rectangles having the
dimensions of 4 by 4 and 3 by 6 respectively - that exist. However, there are plenty other equable
shapes that exist with integer sides, including one circle, five triangles, three rectangular pentagons, 2

other quadrilaterals and many more trapezoids, irregular quadrilaterals and irregular pentagons.

In addition, there are also over 200 equable integer solids including bicones, bicylinders, quadrilateral
prisms, triangular prisms, trirectangular tetrahedrons, dipyramids and so on. But all of these shapes are

still waiting to be explored by us and will remain on our bucket list until the next time!
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The Marble Proposition

Abstract:

This project is our take on the question: A board has some holes to hold marbles, red on one side and
blue on the other. Interchange the positions by making one move at a time. A marble can jump over
another to fill the hole behind. Start with one pair, then 2 and more. Find the relationship between the

number of pairs of marbles and the number of moves while doing so.

Introduction:

A marble is a small spherical object often made from glass, clay, steel, plastic, or agate. Marbles date
back to around 2500 BCE and this was confirmed when small marbles made of stone were found by
archeologists at excavation near Mohenjo-daro, a site associated with the Indus Valley Civilization.

They were also found in excavations of sites associated with Chaldeans of Mesopotamia and ancient

Egypt.

Marbles vary in size but they’re commonly about 13 mm in diameter. However, they may range from
less than 1 mm to over 8 cm, while some art glass marbles for display purposes are over 30 cm wide.
There are various types of marbles, and names vary from locality to locality. They are made using many

techniques which can be categorized into two general types: hand-made and machine-made.

Marbles are often collected, both for nostalgia and for their aesthetic colors. They are also used for a

variety of games and one such game is chinese checkers!

Chinese Checkers is a game that is based on an earlier Victorian game called Halma which is played on
a square 16 x 16 checkerboard with the same rules. Chinese Checkers has been a beautiful experience
which we all have enjoyed throughout our childhood and are enjoying even today.

It is a simple game where each player races all of one's pieces into the star corner on the opposite side of
the board before the opponents do the same. But what does this have to do with the experiment

conducted?

Well, this experiment is basically a linear version of Chinese Checkers. The setup and operation

technique of this experiment coincides with that of Chinese Checkers.



Just like Chinese Checkers, in this experiment, we will be setting a board that has some holes to hold
marbles, red on one side and blue on the other. We then will be interchanging the positions of the
marbles by making one move at a time such that a marble can also jump over another to fill the hole

behind.

However, we will additionally find the mathematical relationship between the number of pairs of
marbles and the number of moves while doing so with increasing numbers of pairs of marbles. And
here starts our pursuit to find out that arithmetic relationship with the help of a contained marble

experiment setup.

Experiment:

Our experiment starts with one pair of marbles and then increases arithmetically upto 5 pairs of
marbles. Each set has been given enough attention to make sure we have made the least possible
number of moves to interchange the position of the marbles. After a couple of failures and wrong
moves, we found a conclusive move technique that works with the least possible moves. Here’s the

move technique showing the number of moves required(m) for the respective number of marble

pairs(n):

If n = 1 then,
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If n = 2 then,
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Result:

According to the experiment conducted, the equations relating the number of pairs of marbles(n) used
and the number of moves(m) required to exchange their positions are:
If n=1, then m=3.



If n=2, then m=8.
If n=3, then m=15.
If n=4, then m=24.
If n=35, then m=35.

From these equations, we can derive one common general equation that shows the relationship
and that is:
m = n(n+2)(or) m=n"+2n

wheren > 0

Proof:
To prove and ensure that 7 = n(n+2) truly does show the relationship between the number of pairs of
marbles(n) used and the number of moves(m) required to exchange their positions, we carried out the

following calculations:

If n=1 then, If n=3 then,
m = n(n+2) m = n(n+2) If n=5 then,
m=1(1+2) m =3(3+2) m =n(n+2)
m=1x3 m=3x5 m=5(5+2)
m=3 m=15 m=5x/

m =35

If n=2 then, If n=4 then,
m =n(n+2) m =n(n+2)
m=2(2+2) m = 4(4+2)
m=2x4 m=4x6
m=8 m=24

The initial experiment supports the above values of m from when n=1 till when n=5.

If n=6 then,
m =n(n+2)
m=6(6+2)
m=6x8

m=48



The below table supports the above value of m when n=6:

“Table showing the moving of marbles when the pairs of marbles used are 6*

If n=7 then,
m =n(n+2)
m=7(7+2)
m=7x9
m=63

The below table supports the above value of m when n=7:

“Table showing the moving of marbles when the pairs of marbles used are 7

THUS, PROVED.

Note: We have practically verified the equation from considering n as 1 till n as 12. However, in this

project we have only shown the proof till n as 6 due to highly increasing numeric values.

If n=6 then, If n=29 then, If n=11 then,
m =n(n+2) m =n(n+2) m =n(n+2)
m=6(6+2) m=9(9+2) m=11(11+2)
m=6x8 m=9x11 m=11x13
m =48 m =99 m =143

If n=8 then, If n=10 then, If n=12 then,
m = n(n+2) m = n(n+2) m = n(n+2)
m=8(8+2) m=10(10+2) m=12(12+2)
m=8x10 m=10x12 m=12x14
m =80 m =120 m =168

Conclusion:

Chinese Checkers, just like chess, stimulates both the left and right hemispheres of the brain by
recognizing the different colors and using logic to make the best move. Thanks to the visual stimuli and

patterns one’s required to keep track of while playing, the game also improves memory.

Chinese Checkers stimulates the brain and encourages innovative thinking to figure out which marbles
to move and where to unclog the path for other of their marbles, thereby, improving their

problem-solving skills.



Similarly, this project has also made us think, keep track, and solve the problem at hand logically and
mathematically. As avid players of Chinese Checkers, we have navigated through one of our favourite

experiences mathematically with the help of our problem-solving skills in this project.

We have discovered the mathematical side of acing a linear version of Chinese Checkers by the
identification of the relationship between the number of pairs of marbles(n) used and the number of

moves(m) required to exchange their positions: m = n(n+2) (or) m = n’+2n.

However, we are still in pursuit to find the formula to ace a game of normal Chinese Checkers. We
know it's already out there but finding it mathematically on our own makes it a lot more enjoyable,

doesn’t it?
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Interpretation of 7 Using the Argand Plane

Abstract:

This project is my take on the question: Using the argand plane, interpret geometrically, the meaning

of 7=~/— 1and its integral powers.

Introduction:

Imaginary Numbers
Imaginary numbers are an important mathematical concept; they extend the real number system R to

the complex number system C , in which at least one root for every nonconstant polynomial exists. An
imaginary number is a real number multiplied by the imaginary unit 7, where 7 is a solution to the
quadratic equation x” + I = 0. The imaginary number 7 is defined solely by the property that its square
is — 1: 7 = — 1. With 7 defined this way, it follows directly from algebra that 7 and - 7 are both square

roots of — 1. It is this property of 7 that we are going to interpret geometrically in this project.

Complex Numbers
An imaginary number 47 can be added to a real number a to form a complex number of the form a +
bi, where the real numbers a and b are called, respectively, the real part and the imaginary part of the

complex number.

Argand Planes
The complex numbers can be represented geometrically on a two-dimensional plane with two
perpendicular axes representing the real and imaginary parts of the number respectively. Such a plane is

referred to as the complex plane, the Argand plane, or the Argand diagram.

Imaginary

Real




An Argand diagram is a plot of complex numbers:
Zz=X+iy
represented by points (x,y) in Cartesian coordinates in the complex plane using the x-axis as the real

axis and y-axis as the imaginary axis.

Interpretation of i=+/— 1 and its Integral Powers:

Construction
1. Draw two mutually perpendicular lines X X’ and Y Y’ interesting at the point O.
2. Using a compass with width 1 unit length, mark A on the OX with O as center.
Now, using the same width and center O, rotate the compass through angles of 902, 1802, 270°
and 360° and mark points A, A,, A; and A4 respectively, on OY, OX’, OY’ and OX.

Interpretation
1. The plane marked by XX’ and YY is a complex plane or argand plane and OA, OA,, OA,,
OA;, and OA denote complex numbers of the form z = x + iy.
2. Since OA, OA,, OA,, OA;, and OA, are complex numbers:
OA=x+iy=1+i(0)=1
OA =x+iy=0+i(1)=1i
OA,=x+iy=-1+i(0)=-
OA;=x+iy=0+i(-1) =i
OA;=x+iy=1+i(0)=1
3. Sinces = \/—71,
OA=1={
OA,=i=i*1=i
OA,=-1=i*i=7
OA,=-i=i*-1=i*i’"=1

OA,=1=(-1y=(@{)=i"



+Im
'

Note that each time we rotate OA by 909, it is equivalent to multiplying OA by i. i is, therefore,

referred to as the multiplying factor for a rotation of 902: OA, =1i".

For any complex number z, rotation through n-right angles will be: z, = z *i". Therefore, through the
converse of this statement, we can say that multiplying a complex number by 7 or any of its integral

powers 7", is equivalent to rotation through n-right angles.

Conclusion:

Geometrically, 7 (=+/— 1) is referred to as the multiplying factor for a rotation of 902. Every time we
multiply a complex number by 7, it is equivalent to rotation by 902. Therefore, multiplying a complex

number z by any of #’s integral powers i”, is equivalent to the rotation through n-right angles: z *i" = z".

This is the geometric meaning of 7 =/— 1 and its integral powers.
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Construction of Ellipses Using the Foci Method

Abstract:

This project is my take on the question: Use the foci property of an ellipse to construct an ellipse.

Introduction to Conics:

Conic sections have been studied for thousands of years and have provided a rich source of interesting
and beautiful results in Euclidean geometry. Conic sections are the shapes or curves that can be created
when a plane intersects a double-napped cone. In other words, conics are the cross sections of
double-napped cones. Depending on the angle of the plane with respect to the cone, a conic section

may be a circle, an ellipse, a parabola, or a hyperbola.

Circle Ellipse Parabola Hyperbola

Types of Conics:

1. Ellipses: They are conic sections that look like elongated circles. They arise when the
intersection of the cone and plane is a closed curve.

2. Circles: They are special kinds of ellipses which are obtained when the cutting plane is parallel
to the plane of the generating circle of the cone; for a right cone, this means the cutting plane is
perpendicular to the axis.

3. Parabola: If the cutting plane is parallel to exactly one generating line of the cone, then the
conic is unbounded and is called a parabola.

4. Hyperbola: In the remaining case, the figure is a hyperbola: the plane intersects both halves of
the cone, producing two separate unbounded U-shaped curves.

5. Degenerate Conics: There also exists a special category of conics called degenerate conics.
They are conics that do not have the usual properties of a conic. They are formed by planes
that pass through the vertex of the cone and are of three types: A singular point, a line, and a

degenerate hyperbola.



TI XS

Clipse Hyperbola

Conic Vertex | Generator Axis
1| Point Cuts outside
2 | Line Cuts touches
3 | Line Pair | Cuts inside
4 | Circle Misses Right angle
5 | Ellipse Misses Not right angle
6 | Parabola | Misses | Parallel to
7 | Hyperbola | Misses | Not Parallel to

Focus, Directrix and Eccentricity:

Focuses or foci are special points with reference to which any of a variety of curves is constructed.
Directrix is a straight line that, together with the point known as the focus, serves to define a conic
section. The distance to the directrix from any point of a conic section is in fixed ratio to the distance

from the same point to a focus.

Parabola Ellipse Hyperbola
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It is also possible to describe all conic sections in terms of a single focus and a single directrix. A conic is
defined as the locus of points P for each of which the distance to the focus F divided by the distance to

the directrix(the distance from P to a fixed line L) is a fixed positive constant, called the eccentricity e.

The eccentricity of the conic section is defined as the distance from any point to its focus, divided by

the perpendicular distance from that point to its nearest directrix:

Distance to the focus from any point on the conic section
Distance to the directrix from the point

Eccentricity =

e=
a



The eccentricity value is constant for any conics. If 0 < e < 1 the conic is an ellipse, if e = 1 the conic is a
parabola, and if e > 1 the conic is a hyperbola. If the distance to the focus is fixed and the directrix is a

line at infinity, the eccentricity is zero and the conic is a circle. If the eccentricity is infinity, then it is of

aline.
=
i
°
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9 Eccentricity = 0.5
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X
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Ellipse:

An ellipse as mentioned earlier is a closed curve that can be described as the locus of points for which
the sum of the distances to two given points or foci is constant. There are two types of ellipses:

horizontal and vertical.

An ellipse has two axes of symmetry:
1. The major axis, which is the line through (or line segment between) the two points most
distant from the center (vertices).
2. The minor axis, which is the line through (or line segment between) the two points least
distant from the center (co-vertices).
The line segments from the center to each vertex are called the semi-major axes, and the line segments
from the center to each co-vertex are called the semi-minor axes. The foci of an ellipse, E and F, lie on

the ellipse’s major axis and are equidistant from the center.

The general equation for a horizontal ellipse (a > b) is:

_m? _1?
Goh’ ook
a b

while the general equation for a vertical ellipse (a < b) is:



2 2
—h —k
N
b a
where (h, k) is the center, a is the length of the semi-major axis, and b is the length of the semi-minor

axis.

This is called the standard form of the equation of an ellipse, such that the ellipse is centered at the

origin (0, 0). The distance from the center to a focus ¢ of an ellipse can be found by using the formula

2 2 2
c=a"-b"

Construction of Ellipse:
There exists multiple ways to construct an ellipse including the concentric circles method, the
rectangular method, the trammel method, the eccentricity method, etc. The one we are going to

employ here is the foci method.

Principle:
The foci method of construction of an ellipse uses the focal property of the ellipse for its construction.
According to this property, the sum of the distances from any point P on the ellipse to these two foci F;

and F, is equal to the length of the major axis, ie. F,P + F,P = 2a.



|PFy| + |PF| = 2a

To understand this property, let us consider an ellipse centered at C(0, 0) with an equation:

x ¥
R

Let P(x, y) be any point on the ellipse and let MPM' be the perpendicular through P on directrices MD
and M'D’. Additionally, let there be a line PK which is perpendicular to the x-axis. Now, by the

definition of the conics, we get:

F1P FZP
=M =P
—FP=c-PM —F,P=c.PM’
—FP=c-KD —F,P=c.(KD)
—F,P=¢(CD - CK) —F,P=¢(CD +CK)
=>F1P=e(%—x) =>F2P=e(%+x)
= FP=a-ex...l(i) = F,P=a+ex....(ii)

[Since the distance from the center to the directrix in an ellipse can be found by using the formula =~

(where a is the distance to the directrix from the point P).]
On adding (i) and (ii),
FP+FP=a-ex+a+ex



FP+F,P=2a
Therefore, the sum of the distances from any point P on the ellipse to these two foci F; and F, is equal

to the length of the major axis. And we will use this property to construct the ellipse.

Process:
The foci method of ellipse construction involves plotting a series of points along the circumference of
the ellipse by drawing a series of intersecting arcs using the foci on the major axis as centers. To
construct an ellipse using the foci method, the following steps are followed:
1. Lay out horizontal (AB) and vertical axes (CD) that intersect at right angles.
2. Locate the foci (F, F,) by setting the compass to one half distance of the major axis AB and
striking arcs along AB using C as the center.
3. Mark a minimum of ten equal distances between F; and F,. The more distances marked, the
more accurate the ellipse construction.
4. With F, as center, and radius A1, A2, A3, etc. draw arcs above and below line AB. And with F,
as center, and radius B1, B2, B3, etc. draw arcs to intersect those struck from F,.
Continue plotting points this way until all points form an ellipse circumference.

6. Once all points are plotted, connect the points using french curves to form an ellipse.

Construction:

Proof:
To prove and ensure that the above construction was indeed done using the focal property of an ellipse,

let’s consider the following:



S.No. Argument Reason
By construction ie.
e Since the compass width set from OB was used to draw CF, and
CF,, line segments CF, and OB and line segments CF, and OB
are congruent. Thus, the line segments CF, and CF, are
F1, F2 are the foci of congruent.
1 . . .
the ellipse Since OB is half of AB, CF, + CF, = AB
® Therefore, according to the focal property of an ellipse, F,
and F, are the foci of the ellipse because from any point C on
the ellipse, the sum of the distances from C to the two foci F,
and F, is equal to the length of the major axis AB.
q=Alandp =Bl T.he‘ compass width used' to draw q was A1 and that for p was B1.
2 o= A2andr< B2 Similarly, the compass width used to draw s
was A2 and for r it was B2.
3 ?:rpz_ Aé1++B1?21 and According to 2.
4 q+p=AB Al +B1=AB.
s+r=AB A2+B2=AB




Length between any

point P and F, + All other plots of the ellipse pointed above and below the major axis

were also plotted in the same manner as the ones involved in p & q and
Length between any

inr&s.
point Pand F, = AB mrees

According to the focal property of an ellipse, the sum of the distances
6 The figure is an ellipse | from any point P on the ellipse to the two foci F, and F, is equal to the
length of the major axis AB.

(QED)

THUS, IT HAS BEEN PROVEN THAT THE ABOVE CONSTRUCTION IS MATHEMATICALLY
ACCURATE ACCORDING TO THE FOCAL PROPERTY OF AN ELLIPSE AND THAT THE
ENTIRETY OF THE CONSTRUCTION WAS BASED ON THE SAME PROPERTY.

Applications of Ellipse:
The shape of an ellipse is formed when a cone is cut at an angle. If you tilt a glass of water, the resulting
shape of the surface of the water is also an ellipse. You can also see ellipses when a hula hoop or tire of a

car looks askew. Though these are examples of optical ellipses, the ellipse also has practical uses in real

life:

Rugby Ball:

Rotate an ellipse about its major axis, and you obtain a rugby ball which is easier to pass.




Furniture and Carpentry:

Elliptical tables, book-cases, vent pipes, etc. look elegant and hence the shape is used often in carpentry.

B N

Food:

Foods are cut to form ellipses, offering a refined touch to simple foods. Cutting a carrot, cucumber or
sausage at an angle to its main axis results in an elliptical slice. Wraps — tortillas wrapped around a
filling — are also often cut into two elliptical wedges. The sharp focus of the ellipse gives these everyday

food items a more elegant look.

Orbits of Planets and Satellites:
The path of each planet is an ellipse with the Sun at one focus. In physics, this is known as Kepler's first

law of planetary motion. The orbits of planets, satellites, moons, and comets, are also elliptical.



Whispering Gallery:

A focus is one of two points that defines the shape and size of the ellipse; they're located on the major
axis of the ellipse, at equidistant points from the center of that axis. If light or a sound wave emanates
from one focus of a real-life ellipse, it will be reflected to the other focus. This property is used to create
whispering galleries, which are structures that allow someone who is whispering in one area to be heard
clearly by someone in another area but not by anyone else. Famous examples of whispering galleries
include the United States Statuary Capitol Hall, Museum of Science and Industry in Chicago,
London's St. Paul's Cathedral and India’s Gol Gumbaz.

Lithotripsy:

Lithotripsy is a surgery-free method of destroying a kidney stone that uses the properties of the ellipse’s
two foci. For a lithotripsy treatment the patient lies in an elliptical tub, with the kidney stone aligned to
one of the foci of the ellipse. Shockwaves emanating from the other focus concentrate on the kidney

stone, reducing it to debris as small as sand that can pass through the body without discomfort.



Beam focused
on kidney stones

N\ I
Ultrasound

emitter 3 Patient \\

Elliptic reflector Kidney stone

Elliptical Pool Table:
The reflection property of the ellipse is useful in an elliptical pool table — if you hit the ball so that it
goes through one focus, it will reflect off the ellipse and go into the hole which is located at the other

focus.




Elliptical Trainers:

An elliptical training machine simulates the motion of running or walking, offering a low-impact
cardio workout. When you walk or run in an elliptical trainer, your foot describes an elliptical path. An
elliptical machine can be motor-driven or user-driven, and some elliptical trainers also feature

handlebars that one can push or pull on to help move the foot pedals through their elliptical path.

Others:

The shapes of boat keels, rudders, and some aviation wings, can all be represented by ellipses.

Conclusion:

We have, in this project, constructed an ellipse using the focal property of ellipses. However, an ellipse
is not simply about mathematics or how we plot it. Ellipse has its own significance; a significance that
can produce something extraordinary; a significance that can delight others with its beauty and
uniqueness. We have seen its immense uses in the real world, which led to this significant role in the

mathematical world.
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Addition and Multiplication in Integer Modulo Integer Number Systems

Abstract:

This project explores addition and multiplication in the integer modulo integer number
systems. It includes verification of whether addition and multiplication are binary operations in Z
modulo 7z number systems using composition tables as well as the verification of the existence of the

properties of binary operations in them.

A.1 Introduction

A.1.1. Some Definitions
Here are some of the definitions of terms used ahead in the paper:
a. Sets:
Sets are a collection of well-defined objects or elements. A set is represented by a capital
letter symbol and elements are written within a curly bracket {...} each separated from one

another by a comma ¢, .

b. Relations:
A relation is a set of ordered pairs that establishes a connection or association between
elements of two sets. Relations can be represented using tables, graphs, or formulas. For

example, a relation R between sets A and B can be represented as R = {(a,b) | a € A,b & B}.

C. Functions:
A function is a relation between two sets where each input element from the first set is
associated with exactly one output element from the second set. It assigns a unique output for
every input. Functions are denoted by lowercase letters and can be represented using equations

or mappings. For example, /: A — B denotes a function f that maps elements from set A to set
B.

d. Operation:
An operation is a mathematical procedure that combines one or more elements to

produce a result. An operation can be a relation, function or combination of both.



Binary Operation:
A binary operation is an operation that takes two elements from a set and combines

them to produce a single element from the same set.

Diophantine Equation:

A Diophantine equation is an equation, typically a polynomial equation in two or
more unknowns with integer coefficients, such that the only solutions of interest are the
integer ones. A linear Diophantine equation equates a constant to the sum of two or more
monomials, each of degree one. It is of the form:

ax + by =c
where 4, b, c are integers. A linear Diophantine of the above form is said to have solutions iff

gcd(a, b)| c.

A.1.2. Integers and their Axioms

e integers are a set of numbers with two operations, addition and multiplication °-". There
The integers (Z tof numb th two operat ddition ‘+” and multiplication *’. Th

exists a set of fundamental properties that define the behavior of the integers under addition and

multiplication called axioms of integers.
p g

The axioms of integers, also known as the axioms of arithmetic, include:

I1.

12.
3.
14.
Is.
I6.

I7.

I8.

Closure: Z is closed under addition and multiplication, ie.
Vab€eZ,a+ beZl
and: Va,b€Z,a-beZ.

Associativity: Va,b,c € Z,(a + b) + ¢ = a + (b + ¢)and (ab)c = a(bc).
Commutativity: Va,b € Z,a + b = b + aandab = ba.
Distributivity: Va, b,c € Z, (a + b)c = ac + bcandc(a + b) = ca + cb.
Existence of additive identity (0): The re is a unique element 0 € Z such that
VaeZ,a+0=0+a=a.
Existence of multiplicative identity (1): There is a unique element 1 € Z such that
VaeZ,a-1=1:-a=a.
Existence of additive inverse: Va € Z,3! (— a) € Z such that
a+(—a)=(—a)+a=0.
Existence of natural numbers: There is a unique non-empty subset N € Z such that:
a. Va,b € N,a+ b € Nandab € N.
b. Va € N, exactly one of the following is true:a € N, (— a) € N, a = 0.



I9. Well-ordering principle: Any non-empty subset S & Z has a least element.

From axiom 8, we can say that Z is a set of numbers formed by the union of natural numbers {1, 2, 3,

4, ...,0} zero {0} and additive inverses of the natural numbers {-1, -2, -3, ..., —oo} ie.

Z={-co,..,-3,-2,-1,0,1,2,3, ..., 0}

A.1.3. Binary Operations and their Properties

Binary Operations as defined earlier (in Section A.1.1), is an operation that takes two elements from

a set and combines them to produce a single element from the same set.

To determine if an operation is binary or not, we need to ensure that it satisfies certain criteria:
R1.The operation must take exactly two elements from a set as input/operands.

R2.The operation must produce a single, well-defined, unique output.

R3.The operation must exhibit closure ie. the \/;/\;;’result of the operation should belong to the
same set from which the input elements are taken.

A binary operation “*’ on a non-empty set A can therefore also be defined as a function from A x A
to A, ie.:

TAxA— A

A
7N /"N
[ \ /
N \_/

Such binary operations exhibit some properties that describe specific characteristics or behaviors

exhibited by the operation when applied to elements of a set. They include:

P1) Closure: A binary operation ¥’ on a set S is said to exhibit closure if for any elements 2 and 4 in
yop y
S, the result of the operation & * 4 is also an element of S.

P2) Associativity: A binary operation “*’ on a set S is said to be associative it V 2, b,c € S, (a *b) "¢

=a*(b o).



x>

P3) Commutativity: A binary operation “’ on a set S is said to be commutative (or exhibit

commutativity) if Va,b € S, a *b=5b*a.

x>

P4) Distributivity: A binary operation “ is distributive over another binary operation ‘#’ if it
means that (a#b)*c=(a*c)#(b*c),Va,bc€ S.

P5S)Identity Element: An element ¢ € S is called an identity element for a binary operation *” iff V
a€ S,a*e=¢*a=a.

P6) Inverse Elements: If there exists an element & € S such thata *b = b *a = ¢ (identity element),
then & is called the inverse element of  with respect to the binary operation .

P7)Idempotency: An operation is idempotent if applying the operation multiple times to an
element does not change its value after the first application. In other words,
a*a=a, Va€ S. Aneclementa € S is called idempotent under *ifa * a = a.

P8) Cancellation: A binary operation
Va,b,c € S, we have:

in a non-empty set S has the cancellation property if

a*b=a*c=b=c [Left Cancellation]

b*a=c*a=b=c [Right Cancellation]

From the axioms of integers (see section A.1.2), we know that addition and multiplication are binary
operations in Z. Addition in Z follows all the properties listed above except (P7) or idempotency.
However, it is to be noted that 0 is idempotent over addition in Z. On the other hand, multiplication
follows all the properties listed above except (P6) and (P7). However, it is to be noted that 0, 1 are

idempotent over multiplication in Z and (P8) is true iff a # 0.

A.1.4. Modular Arithmetics and their Properties
Modular arithmetic is a system of arithmetic that deals with integers and their remainders when
divided by a fixed positive integer called the modulus. For any » € Z , the integers modulo 7 are the

set of least positive residues of the set of residue classes modulo 7, ie.

Z/nZ = {0,1,2, ..., (n — 1)}

It has some important properties and definitions with respect to modular arithmetics:

MI. Congruence: In modular arithmetic, we use the symbol "=" (congruent) to denote equivalence
modulo the modulus. For all 2, 6 € Z , a = b (mod n) means that a and b have the same
remainder when divided by n. And for all 4, b, » € Z such that » # 0, we write a=b (mod n)
iff n|(a-Db).



M2.

M3.

Modular Addition: For any integers a, b € Z/nZ (for some n € Z), thena + b= (a + b) (mod

n). In other words, if two numbers 4, b belong to the set of integers modulo n € Z , then

addition of # and & gives the remainder produced by the sum of 2 and b modulo n.

Proof:
Leta, b € Z such thata =

Then:

x(mod n)and b = y(mod n) wheren € ZZandn > 1.

%y EL/NL (by M1)
n|a — x=>a — x = nkforsomek €Z (by M1)
=>a =Xx + nk ()
n|b—y=>b —y = nlforsome/€EZ (by M1)
=b =y + nl (72)
Adding (7) and (7z), we get:
a+b=(x + nk)+(y + nl) ) (by I1)
=> a+b=(x+y) + (nk + nl) (by I2 and I3)
=> a+b=(x+y) +nlk +1 (by 14)
=> a+b-(x+y)=[x+y) +nk+D] —(x+y) (byI1)
=> a+b-(x+ y)=nlk + 1) (by12,13,17)
Sincek,l € Z, k + | € ZbyI1. Then:
=> nla+b-(x +y) (by divisibility)
=> a+b=(x + y)(modn) (by M1)
=> x(mod n) + y(mod n) = (x + y) (mod n) O

Modular Multiplication: For any integers a, b € Z/nZ (for some n € Z), thena-b=(a-b)

(mod n). In other words, if two numbers 4, & belong to the set of integers modulo n € Z , then

multiplication of z and & gives the remainder produced by the product of 2 and 4 modulo n.

Proof:

Leta, b € Z such thata = x(mod n) and b = y(mod n) wheren € Zandn > 1.

Then:
Xy EL/NL

nja—x=>a—x

=a=x

nlb—x=>b-—y

(by M1)
nk for some k£ € Z (by M1)

nk w(Z)
nl for some/ € Z (by M1)



=b =y + nl (77)

Sincek,n € Z, nk € ZbyIlandsincenk € Z, (— nk) € Z.byI7. Now, since:

a, (—nk) EZ=>a+ (—nk) €Z (byI1)
=>a—nk €Z (byI1)
=>x EZ (from eq.(z))

Similarly, WLOG, from the given and eq.(77), we can say thaty € Z.

Now, Multiplying (z) and (77), we get:

ab=(x + nk)(y + nl) * (by I1)
=> ab=(xy + xnl) + (ynk + nzkl) (by 14)
=> ab=(xy) + n(xl + yk + nkl) (by I3, 14)
=> ab- (xy)=[(xy) + n(xl + yk + nkl)] — (xy) (by I1)
=> ab - (xy)=n(xl + yk + nkl) (by12,13,17)

Since x,y,k,l € Z, xl, yk,nkl € ZbyI1. Then:

=> nlab - (xy) (by divisibility)

=> ab = (xy) (mod n) (by M1)

=> x(mod n) - y(mod n) = (xy) (mod n) O
A.1.5. Cayley Table

A Cayley table, also known as composition table, is a technique of visual representation used to
describe an algebraic structure (usually a finite group) by representing the results of a binary
operation on a set in the form of a square array. It provides a systematic way of showing the

outcomes of combining elements from a set using a specific operation.

This table can be formed as follows:
i. Write the elements of the set (which are finite in number) in the column and row headers.

ii. Write the element associated with the ordered pair (ai , aj) at the intersection of the row headed
by a, and the column headed by a Thus, (ith entry on the left) (binary operator) (jth entry on the

top) = entry where the ith row and jth column intersect.

For example, let's consider a set {a, b, ¢, d} and a binary operation ‘e’ defined on this set. The Cayley

table for this operation would have four rows and four columns. Each cell in the table would contain



the result of applying the operation ‘@’ to the corresponding row and column elements. The table

might look as follows:

a a b c d

a ana baa coa daa
b aab bab cab dab
c aoc bac coc dac
d aad bad cad dad

A.2. Binary Operations in Z /nZ
We already know that addition and multiplication are binary operations in Z. But are they binary
operations in Z modulo 2? In Z modulo 3? In Z modulo 4? In Z modulo 5?

In Z modulo any other integer n > 12 Let’s explore and verify these using Cayley tables.

A.2.1. Addition in Z/nZ

Let’s first verify if addition is a binary operation in Z modulo 7 systems.

In Z modulo 2 (Z/27Z):

ForZ/27Z = {0, 1}, the Cayley table for addition is:
+ 0 1
0 0 1
1 1 0

Is addition a binary operation in Z/27.?

Al12 R1 R2 R3

Yes/No Yes Yes Yes

Therefore, yes, addition is a binary operation in Z/2Z.

What properties of binary operations does addition exhibit in Z/27Z29

Al2 P1 P2 P3 P4 Ps P6 00P7 P8




Yes/No Yes | Yes Yes | No Yes (0) | Yes No (but 0 is Yes
idempotent)
In Z modulo 3 (Z/3Z):
ForZ/3Z = {0, 1, 2}, the Cayley table for addition is:
+ 0 1
0 0 1
1 1 2
2 2 0
Is addition a binary operation in Z/3Z?
Al12 R1 R2 R3
Yes/No Yes Yes Yes
Therefore, yes, addition is a binary operation in Z/3Z.
What properties of binary operations does addition exhibit in Z/37Z?
Al12 P1 P2 P3 P4 P5 P6 P7 P8
Yes/No Yes | Yes Yes | No Yes (0) | Yes No (but 0 is Yes
idempotent)
In Z modulo 4 (Z/4Z):
ForZ/4Z = {0, 1, 2, 3}, the Cayley table for addition is:
+ 0 1 3
0 0 1 3
1 1 2 0
2 2 3 1
3 3 0 2

Is addition a binary operation in Z/4Z?




A.1.2

R1

R2

R3

Yes/No

Yes

Yes

Yes

Therefore, yes, addition is a binary operation in Z/47Z.

What properties of binary operations does addition exhibit in Z/47Z?

Al12 P1 P2 P3 P4 Ps P6 P7 P8
Yes/No Yes | Yes Yes | No Yes (0) | Yes No (but 0 is Yes
idempotent)
In Z modulo 5 (Z/57Z):
ForZ/5Z = {0, 1, 2, 3, 4}, the Cayley table for addition is:
+ 0 1 2 3
0 0 1 2 3
1 1 2 3 4
2 2 3 4 0
3 3 4 0 1
4 4 0 1 2
Is addition a binary operation in Z/5Z?
A.12 R1 R2 R3
Yes/No Yes Yes Yes
Therefore, yes, addition is a binary operation in Z/5Z.
What properties of binary operations does addition exhibit in Z/57Z?
A12 P1 P2 P3 P4 P5 P6 P7 P8
Yes/No Yes | Yes Yes | No Yes (0) | Yes No (but 0 is Yes
idempotent)

In Z modulo n (Z/nZ):




ForZ/nZ = {0,1,2,3, ... (n — 1)}, the Cayley table for addition is:

+ 0 1 2 3 n-1
0 0 1 2 3 n-1
1 1 2 3 4 n

2 2 3 4 5 n+1
3 3 4 5 6 n+2
n-1 n-1 n n+1 n+2 2n-2

Proposition 1. Addition is a binary operation in Z/nZ for any integer 7 > 0.

Proof:
In order to prove the above proposition we need to prove that addition in Z/nZ adheres to the below
principles:

i.  Itmust take exactly two elements from Z/nZ as input.

ii. ~ When applied to the two input elements, it must yield a single, unique output.

iii. It must exhibit closure.

By def " of addition in modular arithmetics (see M2 in section A.1.4.):
x(mod n) + y(mod n) = (x + y) (mod n)
From this it can be observed that addition in Z/nZ has exactly two inputs from the set. Therefore, (i)

is true.

Now, by division algorithm, we can write:

xX+y=mnq+r where ) < r < gq

Taking mod n on both sides:
(x + y)(mod n) = r (modn) (by M1)

Then:



x(mod n) + y(mod n) =r (mod n)

This shows that if x, y € Z/nZ then x + y € Z/nZ and thus, addition in Z/nZ is closed. This shows

that (777) is true.

Additionally, since the division algorithm states that 7 is unique for every (x+y), » and ¢,  (mod n)
and in turn x(mod n) + y(mod n) is also unique for every x, y. Therefore, showing that (77) is true

as well.

Altogether, we can say addition is a binary operation in Z/nZ O

Proposition 2. Addition adheres to the following properties of binary operations in Z/nZ (for any

integer 7 > 1):

i. Closure:Va,b € Z/nZ, a + b € Z/nZ

ii.  Associativity: Va,b,c € Z/nZ,(a + b) + c=a + (b + ¢).

iii. ~Commutativity: Va,b € Z/nZ,a + b = b + a.

iv.  Existence of additive identity: There is a unique element 0 € Z/nZ such that
Va € Z/nZ,a+0=0+a = a

v.  Existence of additive inverse: Va € Z/nZ,3! (— a) € Z/nZ such that
a+(—a)=(—a)+a=0.

vi.  Cancellation: If Va, b, ¢ € Z/nZ , we have:

a+b=a+c=b=candb+a=c+a=b=c

Proof:
i. Toprove:Va,b € Z/nZ, a + b € Z/nL.

See proof of proposition 1.

ii. Toprove:Va,b,c € Z/nZ,(a +b) +c=a+ (b + c).
This can alternatively be written as: (a + b) + ¢ = a + (b + ¢)(mod n).
or: [a(mod n) + b(mod n)] + c(modn) = a(modn) + [b(modn) + c(mod n)].

Leta, b,c € Z. Then:

[a(mod n) + b(mod n)] + c(modn) =[(a + b)(modn)] + c(modn) (by M2)
=[(a + b) + c](modn) (by M2)
=[a + (b + ¢)](mod n) (by I2)



iii.

iv.

=a(modn) + [(b + c)(modn)] (by M2)
=a(modn) + [b(modn) + c(modn)] (byM2)

To prove:Va,b € Z/nZ,a + b = b + a.
This can alternatively be writtenas: a + b = b + a(mod n).

or: a(mod n) + b(modn) = b(modn) + a(mod n).

Leta, b € Z. Then:

a(modn) + b(modn) =[a + b](mod n) (by M2)
=[b + a](modn) (by I3)
= b(modn) + a(modn) (by M2)

To prove: There is a unique element 0 € Z/nZ such thatVa € Z/nZ,a+0=0+a = a.
This can alternatively be writtenas:a + 0 = 0 + a = a (modn).
or:a(modn) + 0 = 0 + a(mod n) = a(mod n).

Leta € Z. Then:

a(modn) + 0 = 0 + a(modn) (from part 717)
and: a(mod n) + 0=[a + 0](modn) (by M2)
= [a](mod n) (by I5)

Combining both: a(modn) + 0 = 0 + a(mod n) = a(mod n)

Let’s assume for contradiction that 3 more than one additive identity in Z/nZ and let them be
eland e, Then forall a € Z/nZ:

a(modn) + e=a (mod n)
Since e, € Z/nZ, substituting a = e,, we get:
e,te=e, (mod n)
Butsince e 5 is also an additive identity,
e, te= el(modn)

is also true.

Equating both of the above equations we get:

e=e, (mod n)



V.

vi.

which is a contradiction. Therefore, additive identity in Z/nZ is unique and since
a(modn) + 0 = 0 + a(modn) = a(mod n) is true, the additive identity must be only
0.

To prove: Va € Z/nZ,3! (— a) € Z/nZsuchthata + (— a) = (— a) + a = 0.
This can alternatively be writtenas: a + (— a) = (— a) + a = 0 (mod n).

or: a(mod n) + (— a)(modn) = (— a)(mod n) + a(modn) = 0(mod n).

Leta € Z. Then:

a(modn) + (— a)(modn) = (— a)(modn) + a(modn) (from part 777)
and: a(mod n) + (— a)(modn) =[a + (— a)](modn) (by M2)

= [0](mod n) (by I7)
Combining both:

a(modn) + (— a)(modn) = (— a)(mod n) + a(modn) = 0(mod n)

Let’s assume for contradiction that 3 more than one additive inverse for 2 € Z/nZ and let

them be aland a, Then:

a+a,=0(modn)anda+a,=0(modn) (2)
We know that:
a,=a+0 (mod n) (from part 7v)
a,=a + (a +a,)(modn) (from eq. (7))
a = (a+a 1) ta, (mod n) (by part 77 and 777)
a,=0 + a,(modn) (from eq. (7))
a=a, (mod n) (from part 7v)

which is a contradiction. Therefore, additive inverse for  in Z/nZ is unique and since
a(modn) + (— a)(modn) = (— a)(mod n) + a(mod n) = 0(mod n) is true, there

must exist a unique additive inverse (— a) forall z in Z /n’Z.

To prove: IfVa, b,c € Z/nZ ,then:a+b=a+c=b=candb+a=c+a=b=c.
This can alternatively be written as: a + b=a+c(modn)=b =c (modn)andb+a=c+a
= b =c¢ (modn).
a+b=a+c(modn) (given)
=>n|(a+b)-(a+c) (by M1)
=> (a+Db) - (a+c)=nkforsomek € Z (by divisibility)



=> (a+b)+(-a-c)=nk (by 14)
=> (a+-a)+(b-c¢)=nk (byI2,13)
=> (0)+(b-c)=nk (by I7)
=> (b-c)=nk (by I5)
=>n|(b-c¢) (by divisibility)
=> b =c¢(modn) (by M1)
and: b+a=c+a(modn) (given)
=>n|(b+a)-(c+a) (by M1)
=> (b+a)-(c+a)=nkforsomek € Z (by divisibility)
=> (b+a)+(-c-a)=nk (by 14)
=>(b+-c)+(a-a)=nk (by 12, 13)
=>(b-c)+ (0)=nk (byI7)
=> (b-c)=nk (by IS)
=>n|(b-c¢) (by divisibility)
=> b =c¢(modn) (by M1)
Altogether, the six properties (i) through (vi) are true, proving proposition 2. O

A.2.2. Multiplication in Z /nZ

Let’s now verify if multiplication is a binary operation in Z modulo 7 systems.

In Z modulo 2 (Z/27Z):
ForZ/27 = {0, 1}, the Cayley table for multiplication is:
0 1
0 0 0
1 0 1

Is multiplication a binary operation in Z/2Z?

Al2 R1 R2 R3

Yes/No Yes Yes Yes

Therefore, yes, multiplication is a binary operation in Z/2Z.



What properties of binary operations does multiplication exhibit in Z /272

Al12 |P1 |DP2 P3 P4 Ps P6 P7 P8
Yes/No [Yes |Yes |Yes | Yes(over |[Yes(1) | Selectively | No (but0,1are | Selectively
“+7) (yesifa= idempotent) (yesifa=1)
1)
In Z modulo 3 (Z/37Z):
ForZ/3Z = {0, 1, 2}, the Cayley table for multiplication is:
0 1 2
0 0 0 0
1 0 1 2
2 0 2 1
Is multiplication a binary operation in Z/3Z?
Al12 R1 R2 R3
Yes/No Yes Yes Yes
Therefore, yes, multiplication is a binary operation in Z/3Z.
What properties of binary operations does multiplication exhibit in Z/37Z?
A.1.2 P1 P2 P3 P4 Ps P6 pP7 P8
Yes/No | Yes |Yes |Yes | Yes(over [Yes(1) [ Selectively No (but 0,1 are Selectively
“+7) (yesifa= idempotent) (yesifa=
1,2) 1,2)
In Z modulo 4 (Z/4Z):
ForZ/4Z = {0, 1, 2, 3}, the Cayley table for multiplication is:
0 1 2 3
0 0 0 0 0
1 0 1 2 3




Is multiplication a binary operation in Z/4Z?

Al12 R1 R2 R3

Yes/No Yes Yes Yes

Therefore, yes, multiplication is a binary operation in Z/4Z.

What properties of binary operations does multiplication exhibit in Z/47Z?

Al2 P1 P2 P3 P4 Ps P6 pP7

P8

Yes/No [Yes |Yes |Yes | Yes(over [Yes(1) [ Selectively No (but 0,1 are
+) (yesifa= idempotent)
1,3)

Selectively
(yesifa=1,3)

In Z modulo 5 (Z/57Z):
ForZ/5Z = {0, 1, 2, 3, 4}, the Cayley table for multiplication is:

0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

Is multiplication a binary operation in Z/5Z?

A.l1.2 R1 R2 R3

Yes/No Yes Yes Yes

Therefore, yes, multiplication is a binary operation in Z/5Z.




What properties of binary operations does multiplication exhibit in Z /572

Al2 P1 P2 | P3 |DP4 Ps P6 p7 P8

Yes/No [ Yes |[Yes | Yes | Yes(over | Yes Selectively (yesifa | No (but0,1are | Selectively (yes if

“+) (1) =1,2,3,4) idempotent) a=1,2,3,4)
In Z modulo n (Z/nZ):
ForZ/nZ = {0,1,2,3, . .., (n — 1)}, the Cayley table for multiplication is:
0 1 2 3 n-1

0 0 0 0 0 0

1 0 1 2 3 n-1

2 0 2 4 6 2n -2

3 0 3 6 9 3n-3

n-1 0 n-1 2n-2 1| 3n-3 n’-2n+l1

Proposition 3. Multiplication is a binary operation in Z/nZ for any integer 7 > 0.

Proof:
In order to prove the above proposition we need to prove that multiplication in Z/nZ adheres to the
below principles:

i. It must take exactly two elements from Z/nZ as input.

ii. ~ When applied to the two input elements, it must yield a single, unique output

iii. It must exhibit closure.

By def " of multiplication in modular arithmetics (see M3 in section A.1.4.):
x(mod n) - y(mod n) = (xy) (mod n)
From this it can be observed that multiplication in Z/nZ has exactly two inputs from the set.

Therefore, (i) is true.



Now, by division algorithm, we can write:

Xy =mnq+r where ) < r < gq

Taking mod n on both sides:
(xy)(mod n) = r (mod n) (by M1)

Then:

x(mod n) - y(mod n) =r (mod n)

This shows that if x, y € Z/nZ then xy € Z/nZ and thus, multiplication in Z/nZ is closed. This

shows that (777) is true.

Additionally, since the division algorithm states that 7 is unique for every (xy), » and ¢, 7 (mod n)
and in turn x(mod n) - y(mod n) is also unique for every x, y. Therefore, showing that (7z) is true as

well.

Alrogether, we can say multiplication is a binary operation in Z/nZ. O

Proposition 4. Multiplication adheres to the following properties of binary operations in Z/nZ (for
any integer 7 > 1):
i. Closure:Va,b € Z/nZ, ab € Z/nZ
ii. Associativity: Va, b,c € Z/nZ, (ab)c = a(bc).
iii. Commutativity: Va,b € Z/nZ,ab = ba.
iv. Distributivity over addition: Va, b,¢ € Z/nZ, (a + b)c = ac + bcand
c(a + b) = ca + cb.
v. Existence of multiplicative identity: There is a unique element 1 € Z/nZ such that
Va€Z/nZ,a-1=1-a=a.
vi. Selective existence of multiplicative inverse: Va € Z/nZ and gcd (a,n) = 1,3!a' € Z/nZ
suchthata - a' = a' - a = 1.
vii. Selective cancellation: If Va, b, ¢ € Z/nZ and gcd (a,n) = 1, we have:

ab=ac=b=candba=ca=b=c

Proof:
i. Toprove:Va,b € Z/nZ, a + b € Z/nZ.



ii.

iii.

iv.

See proof of proposition 3.
To prove: Va, b, ¢ € Z/nZ, (ab)c = a(bc).
This can alternatively be written as: (ab)c = a(bc)(mod n).

or: [a(mod n) - b(mod n)] - c(mod n) = a(modn) - [b(mod n) - c(mod n)].

Leta, b,c € Z. Then:

[a(mod n) - b(mod n)] - c(mod n) = [(ab)(mod n)] - c(mod n) (by M3)
= [(ab)c](mod n) (by M3)
= [a(bc)](mod n) (by I2)
= a(modn) - [(bc)(mod n)] (by M3)

= a(modn) - [b(modn) - c(mod n)] (by M3)
To prove: Va, b € Z/nZ,ab = ba.
This can alternatively be written as: ab = ba(mod n).

or: a(mod n) - b(modn) = b(modn) - a(mod n).

Leta,b € Z. Then:

a(modn) - b(mod n) =[a - b](imod n) (by M3)
=[b - a](imod n) (by I3)
= b(modn) - a(mod n) (by M3)

To prove: Va, b,c € Z/nZ,(a + b)c = ac + bcandc(a + b) = ca + cb.
This can alternatively be written as: (a + b)c = ac + bc (mod n) and

c(a + b) = ca + cb(mod n).

or: [a(mod n) + b(mod n)] - c(mod n) = ac (modn) + bc (mod n) and
c(modn) - [a(modn) + b(modn)] = ca + cb(mod n).

Leta, b,c € Z. Then:

[a(mod n) + b(mod n)] - c(modn) =[(a + b)c](mod n) (by M3)
= [ac + bc](mod n) (by 14)
= ac(mod n) + bc(modn) (by M3)

and:

c(modn) - [a(modn) + b(mod n)] = [c(a + b)](mod n) (by M3)
=[ca + cb](mod n) (by 14)

= ca(mod n) + ch(modn) (by M3)



V.

vi.

To prove: Thereisauniqueelement1l € Z/nZsuchthatVa € Z/nZ,a -1 =1-a = a

This can alternatively be writtenas:a - 1 = 1 - a = a (mod n).

or:a(modn) -1 =1 - a(modn) = a(imod n).

Leta € Z. Then:

a(modn) - 1 =1 - a(modn) (from part 777)
and: a(modn) - 1=[a - 1](mod n) (by M3)
= [a](mod n) (by I6)

Combining both: a(modn) - 1 = 1 - a(mod n) = a(mod n).

Let’s assume for contradiction that 3 more than one multiplicative identity in Z/nZ and let
them be eland e, Then forall a € Z/nZ:

a(modn) - e =a (mod n)

Since e, € Z/nZ, substituting a = e,, we get:

is also true.

Equating both of the above equations we get:

e=e (mod n)

which is a contradiction. Therefore, multiplicative identity in Z/nZ is unique and since
a(modn).1 = 1.a(mod n) = a(mod n) is true, the multiplicative identity must be only
1.

To prove: Va € Z/nZ ,3'a’ € Z/nZsuchthata - a' = a' - a = 1liffged (a,n) = 1.

| J—

This can alternatively be writtenas: a - a' = a' - a = 1 (mod n).

Leta € Z.Then:
a - a'=1(modn)
n|l(a-a)-1 (by M1)



vii.

(a-a)-1=nk forsomek€ Z (by divisibility)
(a-a) —nk =1 (byI1,12,13,17)

Sincea, k,1 € Z,wecansay (a - a’) — nk = 1isof the form of alinear Diophantine
equation. According to the def” of linear Diophantine equations, there exists a solution for

this particular equation ift gcd (a, n)|1. However, we know that the only factor of 11is 1 itself
and therefore, the equation (a - a') — nk = 1 will have asolution iff gcd (a,n) = 1.

Combining thisanda - a' = a' - a(from part 777), we can say that Va € Z/nZ, there exists
a' € Z/nZsuchthata - a' = a' - a = 1iffged (a,n) = 1.

Let’s assume for contradiction that 3 more than one additive inverse for 2 € Z/nZ and let
them be a' and a". Then:
a-a=1(modn)anda - a"=1(modn) ..7)

We know that:
a'=a'-1(modn) (from part v)
a=a - (a-a")(modn) (from eq. (7))
a=(a-a)-a" (modn) (by part 77 and 777)
a=1"-a"(modn) (from eq. (7))
a' =a" (modn) (from part v)

which is a contradiction. Therefore, multiplicative inverse for  in Z/nZ is unique if it exists.
Altogether, we can say, Va € Z/nZ ,3'a' € Z/nZst.a - a' = a' - a = 1iff
gcd (a,n) = 1.

To prove: If Va, b,c € Z/nZ and gcd (a,n) = 1,then:tab=ac=b=candba=ca=b
=c.
This can alternatively be written as: ab = ac (mod n) = b = ¢ (modn)andba=ca=b=c¢

(mod n).

gcd (a,n) = 1 implies that 2 and 7 are co-prime ie. they have no other common factor than
1.
ab = ac(mod n) (given)
=> n | (ab) - (ac) (by M1)

=> (ab) - (ac) = nk for some k € Z (by divisibility)



=> a(b-c)=nk (by 14)
=> n|a(b-c) (by divisibility)

Therefore, since 7 | (b - ¢)and gcd (a,n) = 1, we can infer that (b — ¢) must be an integer

multiple of 7 ie. 7 | (b - ¢). This implies:

n|(b-c)

=>b=c(modn) (by M1)
and: ba = ca (mod n) (given)

=> n|(ba) - (ca) (by M1)

=> (ba) - (ca) = nk for some k € Z (by divisibility)

=> (b-c)a=nk (by 14)

=> n|(b-ca (by divisibility)
Therefore, since 7 | (b - ¢)a and gcd (a,n) = 1, we can infer that (b - ¢) must be an integer

multiple of 7 ie. | (& - ¢). This implies:

n|(b-c)
=>b=c(modn) (by M1)
Altogether, the seven properties (i) through (vii) are true, proving proposition 4. O

A.3. Conclusion

Through this project, we have identified that both addition and multiplication are indeed binary

operations under Z and all number systems Z/nZ wheren € Zandn > 1.

We have also identified and proved the properties of binary operation displayed by addition and

multiplication in Z/nZ . Here is a compilation of all the observations made regarding the properties:

Properties of addition ‘+’

Binary? | P1 P2 P3 P4 Ps P6 p7 P8

7)27.

Yes Yes Yes Yes No Yes (0) Yes No (but 0 is Yes
idempotent)




Z/3Z | Yes Yes Yes Yes No Yes (0) Yes No (but 0 is Yes
idempotent)
Z/AZ | Yes Yes Yes Yes No Yes (0) Yes No (but 0is Yes
idempotent)
Z/57 | Yes Yes Yes Yes No Yes (0) Yes No (but 0 is Yes
idempotent)
Z/nZ | Yes Yes Yes Yes No Yes (0) Yes No (but 0is Yes
idempotent)
Properties of multiplication ‘-’
Binary? | P1 | P2 |P3 [P4 Ps P6 p7 P8
ZJ27 | Yes Yes | Yes |Yes | Yes(over |Yes [ Selectively No (but 0,1 are | Selectively
“+7) (1) | (yesifa=1) |idempotent) (yesifa=1)
Z/3Z | Yes Yes | Yes |Yes | Yes(over |Yes |[ Selectively No (but 0,1 are | Selectively
“+7) (1) | (yesifa= idempotent) (yesifa=
1,2) 1,2)
Z/AZ | Yes Yes | Yes |Yes | Yes(over |Yes [ Selectively No (but 0,1 are | Selectively
“+7) (1) |(yesifa= idempotent) (yesifa=
1,3) 1,3)
Z/57 | Yes Yes |Yes |Yes | Yes(over |Yes | Selectively No (but 0,1 are | Selectively
“+7) (1) |[(yesifa= idempotent) (yesifa=
1,2,3,4) 1,2,3,4)
Z/nZ | Yes Yes | Yes |Yes | Yes(over |Yes [ Selectively No (but 0,1 are | Selectively
“+’) (1) | (yesaiff idempotent) (yes aiff
ged(a,n)=1) ged(a,n)=1)
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Scalar and Vector Triple Products and their Geometrical Interpretation

Abstract:
This project explores the concept of triple products. It dives deep into the definition,
geometrical interpretation, calculation and properties of scalar and vector triple products. It also

introduces the concept of quadruple products.

B.1. Introduction:

In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually
Euclidean vectors. The name "triple product” is used for two different products, the scalar-valued scalar
triple product and, less often, the vector-valued vector triple product. Before we explore these triple

products, let’s first define some basic terms associated with the concept.

B.1.1. Scalar Product
The scalar product, also known as the dot product or inner product, is a mathematical operation
that takes two vectors and produces a scalar quantity. It is defined for vectors in Euclidean space

but can also be extended to other vector spaces.

For two vectors A = (A;, A,, As, ..., A,) and B = (B,, B,, B, ..., B,), the scalar product is calculated
as follows:

A * B = A1B1 + Asz + A3B3 + cee + Aan

Alternatively, it can be expressed using the summation notation as:

A-B= Y (AiB)
i=1

Scalar product can also be given as:
A-B=|A||B|cosb
where 0 is the angle between A and B.

The result of the scalar product is a scalar value, not a vector, which represents the magnitude of
the projection of one vector onto the other. Geometrically, it represents the product of the

lengths of the vectors and the cosine of the angle between them.



The scalar product has several important properties, including commutativity (A-B=B - A),
linearity (A - (B+C)=A-B+ A - C), and distributivity with scalar multiplication (k(A - B) =
(kA)-B=A-(kB)).

B.1.2. Vector Product
The vector product, also known as the cross product, is a mathematical operation that takes two
vectors in three-dimensional space and produces a new vector perpendicular to the original two

vectors. Unlike the scalar product, which results in a scalar, the vector product produces a vector.

For two vectors A = (A,i +A,j+ Azk) and B = (B,i+B,j+ B;k), the vector product is calculated as

follows:
A X B = (A2B3 - A3B2)i + (A3B1 - A1B3)j + (A1B2 - AzBl)k
Alternatively, it can be expressed using the determinant notation:

AxB=|ij k|
| Ar Ay A, |
| B, B, Bs |

Where i, j, and k are the unit vectors along the x, y, and z axes, respectively.

The cross product A x B produces a new vector that is orthogonal (perpendicular) to both A
and B. The magnitude of the resulting vector is equal to the product of the magnitudes of A and
B multiplied by the sine of the angle between them. The resulting vector follows the right-hand
rule ie., if you point your right thumb in the direction of A and curl your fingers towards B, the

direction your extended fingers point in will be the direction of the resulting vector.

Geometrically, the cross product represents a vector that is perpendicular to the plane formed by
A and B. If you imagine extending A and B to form a parallelogram, the cross-product gives the

area of the parallelogram.

The vector product has several important properties, including anti-commutativity (A x B = -B
x A), linearity (A x (B + C) = A x B+ A x C), and distributivity with scalar multiplication (k(A
x B) = (kA) x B=A x (kB)).



B.1.3. Some Other Definitions

Here are some other definitions that is used ahead:

1.

2.

Parallelepiped: A parallelepiped is a three-dimensional geometric shape formed by six

parallelograms as its faces. It is a generalization of a parallelogram to three dimensions.

A parallelepiped has eight vertices, twelve edges, and six faces. Each face is a
parallelogram, and opposite faces are parallel and congruent. The edges of a

parallelepiped are shared by two faces, and the angles between adjacent faces are equal.

Three equivalent definitions of parallelepiped are
- apolyhedron with six faces (hexahedron), each of which is a parallelogram,
- ahexahedron with three pairs of parallel faces, and

- aprism of which the base is a parallelogram.

The shape of a parallelepiped is determined by the lengths of its three pairwise
non-parallel edges and the angles between them. These edges are usually referred to as

the base vectors or sides of the parallelepiped.

Vector Projection:

The vector projection of one vector over another vector is the length of the
shadow of the given vector over another vector. It is obtained by multiplying the
magnitude of the given vector with the cosine of the angle between the two vectors

ie.the projection of one vector u onto another vector v is given by:
u-v
|ul

The resultant of a vector projection formula is a scalar value.



B.2. Scalar Triple Product:

B.2.1. Definition
The scalar triple product (also called the mixed product, box product, or triple scalar product) is
defined as the dot product of one of the vectors with the cross product of the other two i.e., if a,

b, ¢ are three vectors, then their scalar triple product is:

a-(bxc)

Symbolically, it is also written as:

[abc]=[a,b,c]=a-(bxc).

B.2.2. Geometrical Interpretation
Proposition 1. Geometrically, the scalar triple product:
c-(axb)
is the (signed) volume of the parallelepiped defined by the three vectors a, b, c.

Proof:

The volume of the parallelepiped is the base area times the height. The base area, as you know, is
the magnitude of the area of the parallelogram formed by vectors a and b which is equal to [ax b]

by def™ of the vector product. Using the definition of cross product, we also know thata x b is



perpendicular to the plane containing vectors a and b. Then the height of the parallelepiped is

given by the projection of ¢ along (a x b), which is equal to:

c-(axb)
|ax b
Then:
Volume = Base - Height
-(ax b
> Volume=|a x b| - —-&XP)
lax b|
=> Volume = |c - (aX b )|
which is the scalar triple product of the vectors. O

B.2.3. Calculation of Scalar Triple Product
Proposition 2. For any three vectors a = a,i +a,j + a;k, b =b,i + b,j + bsk, and c = ¢;i + ¢,j +
c;k, the62161ir scalar triple product is given by the determinant of the components of the three

vectors, ie:

Scalar Triple Product Formula

THE MATH EXPERT

a.(bxc)=det =det| 4, =det[a }

Proof:

Using the definition of the cross product and dot product, we have:



1T 5 k|
i k
| —
a-(bxc)=a-|by bz ba
lcy c2 cal

[(baca — caba)t — (bica — ciba)f + (bics — ciba)k] - (ai + as] + agk)

= (bocg - cobglat + (c1b3z - bieglag + (b1ez - ¢qbz)az

la; az azl|
= I b1 bg bg I
lcy ¢ cal

B.2.4. Properties of Scalar Triple Products
We have explored the concept of the scalar triple product along with its geometrical
interpretation and formula. Let us now go through some of its important properties for a better

understanding of the concept:

1. Swapping the positions of the operators without re-ordering the operands leaves the
triple product unchanged. This follows from the preceding property and the

commutative property of the dot product:

a-(bxc)=(bxc)-a

2. The scalar triple product is unchanged under a circular shift of its three operands (a, b,

c) due to the property of determinants:

a-(bxc)=b-(exa)=c:(axb)

. a, a/| |, ¢, c | |b b, b,
abc=\b. b, b.|=|la, a, a.|=|c, ¢, c.|.
¢, ¢, ¢ | |bp b b la, a, a

3. Swapping any two of the three operands negates the triple product. This follows from
the circular-shift property and the anticommutativity of the cross product can be

shown using the property of determinants:



a-(bxe)=-—a-(cxb)

= —b:(axc)
= —c- (b xa)
a, a, a. b, b, b a, a, a,
abc=\b. b, b.|=—-a, a, a.|=—|c, ¢, c.|
¢, €, C. c, ¢, C. b, b, b.

. If any two vectors in the scalar triple product are equal or parallel, then its value is zero:

a-(axb)=a:-(bxa)=a-(bxb)=b:-(axa)=0

. Ifa, b, care coplanar, thena- (b x ¢) = 0 since b x ¢ produces a vector that is
perpendicular to a and the scalar product of two perpendicular vectors is zero.
Geometrically, we can explain this as possible because the parallelepiped defined by

them would be flat and have no volume.

[Aabc]=[aAbc] =[abAc] =X [abc], where A is a real number because:
[fabc]=(a)-(bxc)=A-(a-(bxc))=X[abc]

[aAbc]=[Abca]l= (Ab)-(cxa)=X(b-(cxa))=A[bca]=A[abc]
[abAc] =[Acab]= (Ac)-(axb)=X-(c-(axb))=A[cab]=A[abc]
[(a+b)cd] =[acd]+ [bcd] because:
[(@+b)cd]=(a+Db)-(cxd)=a-(cxd)+b-(cxd)=[acd] +[bcd]

and [a (b+c) d] = [abd] + [a ¢ d] because:
[a(b+c)d] =a-((b+c) xd)=a-((b+c)xd)=a-(bxd+cxd)=a-(bxd)+a-(cxd)
=[abd]+[acd]

and [ab (c+d)] = [abc] + [a b d] because:
[ab(ctd)]=a-(bx(ctd))=a-((bxc)+(bxd))=a-(bxc)+ a-(bxd)=[abc]+
[abd]O

. The simple product of two triple products (or the square of a triple product), may be

expanded in terms of dot products:



((axb)-c)((dxe) - f)=det |b-
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B.3. Vector Triple Product:

B.3.1. Definition and Geometric Interpretation

The vector triple product is defined as the cross product of one vector with the cross product of

the other two:

ax(bxc)

A vector triple product usually represents another vector geometrically. This is because the vector
product of two vectors gives a vector and the cross product of this vector with the third vector

also results in another vector.

B.3.2 Calculation of Vector Triple Product
Proposition 3. The vector cross-product can be solved by the below relationship (known as

triple product expansion, or Lagrange's formula):

ax(bxec)={(a -c)b—(a-b)ec
Proof:

The x component of u x (v x w) is given by:
(ux (vxw)), =u,(v,w, —v,w,) —u,(v,w, — vV, W)
= v, (u,w, +u.w;) — w,(u,v, +u,v;)
=v(u,w, +u.w;) — w,(u,v, +w,v,) + (u,v,w, —u,v,w,)
= v (u,w, +u,w, +u.w;) — w,(u,v, +u,v, +u.v;)
=(u-w)v, — (u-v)w,
Similarly, the y and =z components of u x (v X w) are given by:
(ux (vxw)), =(a-w)v, — (u-v)w,
(ux(vxw)),=(u-wv, —(u-v)w,
By combining these three components we obtain:

ux (vxw)=(u-w)v—(u-v)wb



B.3.3. Properties of Vector Triple Product
1. Since scalar product is commutative, a x (b x ¢) =(a*b)c - (a- c)b =c(a-b) —b(a - c).

2. Since vector product is anticommutative:
(axb)xe=-cx(axb)=—(c-b)a+(c-a)b

3. The vector triple product satisfies: 2 ™ (bxc)+bx(cxa)tcx(axb)=0

because:a x (b xc)+bx(cxa)+cx(axb)=(a-b)c-(a-c)b+(b-cla-(b-a)c+(c-
a)b-(c-b)a= (b:c)a-(c-b)a+(c-a)b-(a-c)b+(a-b)c-(b-a)c=(b-c)a-(b-c)a
+(a-c)b-(a-c)b+(a-b)c—(a-b)c=0which is the Jacobi identity for the cross
product.

B.4 Quadruple Products

Looking beyond the triple products, there also exists a concept called the quadruple products. Itis a
product of four vectors in three-dimensional Euclidean space. The name "quadruple product” is used
for two different products, the scalar-valued scalar quadruple product and the vector-valued vector

quadruple product.

B.4.1. Scalar Quadruple Product
The scalar quadruple product is defined as the dot product of two cross products:
(axb)-(cxd)
where a, b, ¢, d are vectors in three-dimensional Euclidean space. It can be evaluated using the
identity:
(axb)-(cxd)=(a-c)(b-d)-(a-d)(b-c)

or by using the determinant:

(axb):(cxd)

a-c a-d
b-¢c b-d|’

B.4.2. Vector Quadruple Product
The vector quadruple product is defined as the cross product of two cross products:
(axb)x(cxd)
where a, b, ¢, d are vectors in three-dimensional Euclidean space. It can be evaluated using the
identity:
(axb)x(cxd)=[abd]c-[abc]d
where [ab¢] = a - (b x ¢).



B.5 Conclusion:

In addition to their mathematical elegance, triple and quadruple products have numerous practical

applications in various fields. Here are a few notable examples:

1.

Physics and Mechanics: In physics, the scalar triple product helps calculate the work done by a
force in moving an object, and the vector triple product is essential for determining torque and
angular momentum. These concepts are fundamental in studying rotational motion, rigid
bodies, and the behavior of physical systems.

Geometry and Graphics: In computer graphics, the vector triple product is used to calculate
surface normals, which determine how light interacts with 3D objects, leading to realistic
shading and rendering effects. In geometry, they help solve problems related to areas, volumes,
and determining the relationships between vectors and shapes.

Electromagnetism: In electromagnetic field theory, the vector triple product is used to
determine the direction and strength of magnetic fields generated by current-carrying wires or
coils. This knowledge is vital for designing electric motors, transformers, and other
electromagnetic devices.

Engineering and Robotics: In structural engineering, the scalar triple product helps determine
the stability and equilibrium of structures, while the vector triple product is used to calculate
moments and forces acting on various components. In robotics, these concepts are utilized for
motion planning, kinematics, and controlling robot manipulators.

Fluid Dynamics: Triple products are used in fluid dynamics to analyze flow patterns and
turbulence. They help calculate vorticity, which describes the rotation and circulation of fluid
particles. Understanding vorticity is crucial for studying fluid behavior, such as the formation

of eddies, flow separation, and the interaction between fluids and solid objects.

These are just a few examples of the wide-ranging applications of triple and quadruple products. Their

utility extends to various scientific and engineering disciplines, allowing researchers, engineers, and

scientists to analyze complex systems, solve problems, and gain deeper insights into the physical world.

In conclusion, the concept of triple products, including scalar and vector triple products, provides

valuable mathematical tools for analyzing geometric relationships and solving problems in various

fields. Additionally, the introduction of quadruple products expands our understanding of

higher-dimensional spaces. Overall, triple and quadruple products offer elegant solutions and enhance

problem-solving capabilities in mathematics and physics.
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