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Preface
Throughout my journey in mathematics, I've had the privilege of exploring diverse mathematical
concepts and theories, both within the structured environment of classrooms and through
independent study. This anthology comprises a collection of 6 research papers, each delving into
di�erent branches of mathematics, ranging from algebra and complex numbers to geometry, number
theory.

Writing these articles has been instrumental in deepening my understanding of the intricacies of
various mathematical principles. It has not only honed my analytical skills but also reignited my
passion for the beauty and elegance inherent in mathematical structures and proofs. Each article in this
anthology is a testament to my fascination with the world of mathematics and my commitment to
sharing its wonders with fellow enthusiasts.

To everyone reading this anthology, I hope you have as much fun as I had writing each feature article in
here!



The Equability Factor

Abstract:
This project is our take on equable shapes and on the question: An eccentric artist says that the best
paintings have the same area as their perimeter numerically. Let us not argue whether such sizes
increase the viewer’s appreciation, but only try to �nd what sides - in integers only - a rectangle must
have if its area and perimeter are to be equal.

Introduction:
Ever heard of perfect shapes? Never?

Contrary to several people’s beliefs, perfect shapes do exist. Perfect shapes or equable shapes refer to
two dimensional shapes that have the same numerical perimeter and area. While in three dimensions, a
shape is called equable when its surface area is numerically equal to its volume.

For any given shape (all dimensions), there is always a similar equable shape!

For example, a circle with a radius of r = 2, has both a perimeter and area of 4π and a cube with side
length six has equal surface area and volume of 216.

Circumference = 2.π.r
= 2.π.2
= 4π

Area = π.r2 = π.22 = 4π

Surface area = 6.a2

= 6.62

= 216

Volume = a3 = 63 = 216
While talking about areas and perimeters, it is important to consider the scaling and units. An area of a
shape cannot be equal to the perimeter except in a particular relative unit of measurement. For
example, if the shape has equal areas and perimeters while using yards, they might not maintain the
same equality when the unit is converted to meters or feet.

Moreover, this di�erence also tends to be contrary to what the name “equable” implies. Changing the
size while leaving the shape intact changes an ‘equable shape’ into a ‘non-equable shape’. To check this
di�erence, the use of integer dimensions becomes necessary.



While combining the restriction on integer dimensions to a shape being equable, the probability of
equable shapes becomes signi�cantly more limited than either of the conditions on their own.

For instance, there are in�nitely many Pythagorean triples that describe integer-sided right triangles,
and there are in�nitely many equable right triangles having non-integer sides. However, there are only
two equable right triangles with integer dimensions.

In this project, we have set out to �nd equable rectangles while combining the restriction of exclusively
using integer dimensions. And here begins our quest to �nd out the 2 equable integer rectangles that
ever exist in the entire universe of shapes!

The Experiment - A Quadrilogue:
(An - Anicham; Ak - Akshitha; Ad - Adhvighaa; Sh - Shivani)

Ad - Let’s start by �nding at least one that works.

Ak - Okay, let’s start with squares then.

An - What? Squares? All the sides are the same in squares. How do they become rectangles?

Sh - All squares have the properties of a rectangle! The opposite sides are parallel and equal to each
other, each interior angle is equal to 90 degrees, the sum of all the interior angles is equal to 360
degrees, the diagonals bisect each other, both the diagonals have the same length and so on. So, all
squares are rectangles! However, remember that all rectangles are not squares because unlike squares
rectangles don’t have all the sides equal to each other and don’t have diagonals that bisect each other
perpendicularly...

An - Ohh! I get it now. In that case, we can start with squares and see if they work.

Sh - Okay. Let’s make a table then.

[draws the following table]

Length of Side of Square = a Area = a2 Perimeter = 4a



1 1 4

2 4 8

3 9 12

4 16 16

5 25 20

6 36 24

An - We’ve got a winner! 4 works. Can any other squares work?

Ad - That may be the only one. The area is quickly getting larger than the perimeter as we increase the
length of the square...

Ak - Yes, once we pass the side length of 4, it does not seem possible for the perimeter to catch up with
the area.

Sh - Area's de�nitely winning that race! So, what’s next?

An - A table is more complicated for non-squares because of the two di�erent measurements of length
and breadth.

Ak - Yeah…How are we going to make that work?

Ad - Well, let’s start with testing a few with trial and error? We’ll get some ideas after that for sure...

Sh - Yes, that makes sense. What about 2 and 3?

(2x3 rectangle drawing)

Ak - Nope! Perimeter of 10 and area of 6. Doesn’t work.

An - So, then what about 2 1/2 and 3? That’s a perimeter of 11 and area of 7 1/2 . That’s closer.

Ad - Let’s try using whole numbers �rst and see what happens.



An - Sure, let’s stick with those because our main goal is to use integer dimensions and make sure there
isn't an anomaly with respect to units.

Ak - Okay, let’s try 4 and 3... 4 times 3 is 12. 4 + 3 is 7, double that and we get 14.

(4x3 rectangle drawing)

An - Close!

Sh - 5 times 3 is 15. 5 + 3 is 8, double that is 16.

(5x3 rectangle drawing)

Ad - Even closer!

Ak - I don’t think it will ever work if the area is odd, because the perimeter has to be even.

Sh - You’re right. After all, to �nd the perimeter, we add the two numbers and double the sum. It HAS
to be even.

An - Well, that’s odd!

[laughing at the joke made]

Ad - Okay, so we were close with 5 and 3, but we need an even product. How about 6 and 3 then?

Sh - 6 times 3 is 18. 6 + 3 is 9 and double 9 is 18.

(6x3 rectangle drawing)

Ak - Hooray! Another winner! We found one more! Is that all of them?

[There is a long pause during which everyone thinks about the problem.]

An - I don’t know, but I don’t think so. What are we doing each time we try an example?

(axb rectangle drawing)



Sh - If we call the side lengths a and b , then area is a times b . [writes Area = ab ] To �nd perimeter,
we’ve been adding a and b and then doubling that sum. [writes Perimeter = 2(a + b)] Then we want
the area and perimeter to be equal, so…

An - Oh, I see. We need to �nd rectangles with sides lengths a and b that make the area ab equal to the
perimeter, which is... [pauses to write ab = 2(a + b) ] ...twice the sum of a and b . Now we can solve for
a . We’ll multiply �rst. [mumbles about the distributive property while writing the following]

Area = ab

Perimeter = 2(a+b)

If area and perimeter are equal then,

ab = 2(a + b)

ab = 2a + 2b

Ad - Then we can subtract 2a from both sides. And that will be...[writes the following]

ab − 2a = 2b

An - Right! And abminus 2a is the same as a times the quantity bminus 2. [writes the following]

a(b − 2) = 2b

Sh - Then you can divide both sides by b minus 2 such that you have only a on one side. [writes the
following]

a(b − 2) = 2b

a = (2b)/b−2

Ak - Oh, so there are lots of rectangles!! We can plug in whatever side length we choose for b and we’ll
always get the length of side a.

Ad - Let’s try the two we’ve found so far. If you put 6 in for b you get 12/4 = 3 , and that was our other
side length.

Sh - And if you put 4 in for b you get 8/2 = 4 as our other side length. Yup, it checks!



Ak - So, how many more rectangles are there that work? Can we really put any number in for b and it
will give us the a that works for it?

An - [after a brief pause] Sure. Like if you put in 10 as side length b , that gives us
20/8 for a . So for a 2.5 × 10 rectangle, the area is 25 square units and the perimeter is 25 units.

Ad - Guess they are not all going to be our “whole” numbers are they?

Sh - Yeah, but not every number will work…

An - Exactly! For example, in case we had a side length of 1, we’ll get a negative value.

Ak - So basically, since a = (2b)/b-2 and a and b are measurement that are always greater than 0… [writes
the following]

b > 0
b-2 > 0
b > 2

...b is always greater than 2.

Ad - So, there are an in�nite number of these rectangles but yet limited to certain restrictions?

An - Yes! You got that right!

Sh - Wait, if I am presuming this right, it might be possible to draw a graph for this.

Ak - Really? Let’s give it a try then. [draws the following graph]



An - So, according to this graph, if you continue halving the di�erence in lengths and subtracting this
and doubling the breadth and adding it on you can �nd many more rectangles with equal perimeter
and area.

Sh, Ak, Ad - Wait, what? You might want to walk us through this...

An - So ultimately, there is a pattern linking the length of the sides of successive equable rectangles.

Starting at the square with sides 4 by 4 and then the rectangle with side length of 3 and breadth of 6…

The di�erence between the lengths 3 and 4 is 1, the di�erence between the breadths 4 and 6 is 2.

To get from 3 to the next length you halve the di�erence between 4 and 3 and subtract this from 3, to
get 2.5.

To get from 6 to the next breadth you double the di�erence between 4 and 6 and add this to 6, to get
10.

So, if you continue using this method you can �nd many more rectangles with equal perimeter and
area.

Ak - So, what you’re trying to say is:

L3 = L2 - (L1 - L2 )/2

B3 = B2 + 2(B2 - B1 )

An - Yes!

Sh - So, we’ll get 4 by 4, 3 by 6, 2.5 by 10, 2.25 by 18, 2.125 by 34 and so on?

An - YES!!

Ad - That’s amazing! I think we have reached our goal on solving this problem.

Ak - Yes, we have, haven’t we?



An, Sh - WEGUESS SO!!

Result:
According to the above conducted experiment, it has been found, through a trial and error process,
that there are only two rectangles which are both equable and have integral values for their lengths and
breadths.

The relationship between the length and the breadth has been found to be a = (2b)/b−2where a is the
length and b is the breadth and the two equable rectangles have been found to have the dimensions 4
by 4 and 3 by 6 respectively.

In addition, a graph on the dimensions of equable rectangles has also been plotted. Thus, the
relationship between the dimensions of various equable rectangles have been determined to be L3 =
L2 - (L1 - L2)/2 and B3 = B2 + 2(B2 - B1) where L is the length and B is the breadth.

Conclusion:
With this ends our quest to �nd out the 2 equable integer rectangles - the rectangles having the
dimensions of 4 by 4 and 3 by 6 respectively - that exist. However, there are plenty other equable
shapes that exist with integer sides, including one circle, �ve triangles, three rectangular pentagons, 2
other quadrilaterals and many more trapezoids, irregular quadrilaterals and irregular pentagons.

In addition, there are also over 200 equable integer solids including bicones, bicylinders, quadrilateral
prisms, triangular prisms, trirectangular tetrahedrons, dipyramids and so on. But all of these shapes are
still waiting to be explored by us and will remain on our bucket list until the next time!
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The Marble Proposition

Abstract:
This project is our take on the question: A board has some holes to hold marbles, red on one side and
blue on the other. Interchange the positions by making one move at a time. A marble can jump over
another to �ll the hole behind. Start with one pair, then 2 and more. Find the relationship between the
number of pairs of marbles and the number of moves while doing so.

Introduction:
A marble is a small spherical object often made from glass, clay, steel, plastic, or agate. Marbles date
back to around 2500 BCE and this was con�rmed when small marbles made of stone were found by
archeologists at excavation near Mohenjo-daro, a site associated with the Indus Valley Civilization.
They were also found in excavations of sites associated with Chaldeans of Mesopotamia and ancient
Egypt.

Marbles vary in size but they’re commonly about 13 mm in diameter. However, they may range from
less than 1 mm to over 8 cm, while some art glass marbles for display purposes are over 30 cm wide.
There are various types of marbles, and names vary from locality to locality. They are made using many
techniques which can be categorized into two general types: hand-made and machine-made.

Marbles are often collected, both for nostalgia and for their aesthetic colors. They are also used for a
variety of games and one such game is chinese checkers!

Chinese Checkers is a game that is based on an earlier Victorian game called Halma which is played on
a square 16 x 16 checkerboard with the same rules. Chinese Checkers has been a beautiful experience
which we all have enjoyed throughout our childhood and are enjoying even today.
It is a simple game where each player races all of one's pieces into the star corner on the opposite side of
the board before the opponents do the same. But what does this have to do with the experiment
conducted?

Well, this experiment is basically a linear version of Chinese Checkers. The setup and operation
technique of this experiment coincides with that of Chinese Checkers.



Just like Chinese Checkers, in this experiment, we will be setting a board that has some holes to hold
marbles, red on one side and blue on the other. We then will be interchanging the positions of the
marbles by making one move at a time such that a marble can also jump over another to �ll the hole
behind.

However, we will additionally �nd the mathematical relationship between the number of pairs of
marbles and the number of moves while doing so with increasing numbers of pairs of marbles. And
here starts our pursuit to �nd out that arithmetic relationship with the help of a contained marble
experiment setup.

Experiment:
Our experiment starts with one pair of marbles and then increases arithmetically upto 5 pairs of
marbles. Each set has been given enough attention to make sure we have made the least possible
number of moves to interchange the position of the marbles. After a couple of failures and wrong
moves, we found a conclusive move technique that works with the least possible moves. Here’s the
move technique showing the number of moves required(m) for the respective number of marble
pairs(n):

If n = 1 then,

m

1

2

3

If n = 2 then,

m



1

2 0
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8

If n = 3 then,

m
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If n = 4 then

m
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If n = 5 then

m
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Result:
According to the experiment conducted, the equations relating the number of pairs of marbles(n) used
and the number of moves(m) required to exchange their positions are:

If n=1, then m=3.



If n=2, then m=8.

If n=3, then m=15.

If n=4, then m=24.

If n=5, then m=35.

From these equations, we can derive one common general equation that shows the relationship
and that is:

m= n(n+2) (or)m= n2+2n
where n > 0

Proof:
To prove and ensure that m = n(n+2) truly does show the relationship between the number of pairs of
marbles(n) used and the number of moves(m) required to exchange their positions, we carried out the
following calculations:

If n=1 then,
m= n(n+2)
m = 1(1+2)
m = 1 x 3
m = 3

If n=2 then,
m= n(n+2)
m = 2(2+2)
m = 2 x 4
m = 8

If n=3 then,
m= n(n+2)
m = 3(3+2)
m = 3 x 5
m = 15

If n=4 then,
m= n(n+2)
m = 4(4+2)
m = 4 x 6
m = 24

If n=5 then,
m= n(n+2)
m = 5(5+2)
m = 5 x 7
m = 35

The initial experiment supports the above values of m from when n=1 till when n=5.

If n=6 then,
m= n(n+2)
m = 6(6+2)
m = 6 x 8
m = 48



The below table supports the above value of m when n=6:
*Table showing the moving of marbles when the pairs of marbles used are 6*

If n=7 then,
m= n(n+2)
m = 7(7+2)
m = 7 x 9
m = 63

The below table supports the above value of m when n=7:
*Table showing the moving of marbles when the pairs of marbles used are 7*

THUS, PROVED.

Note: We have practically verified the equation from considering n as 1 till n as 12. However, in this
project we have only shown the proof till n as 6 due to highly increasing numeric values.

If n=6 then,
m= n(n+2)
m = 6(6+2)
m = 6 x 8
m = 48

If n=8 then,
m = n(n+2)
m = 8(8+2)
m = 8 x 10
m = 80

If n=9 then,
m = n(n+2)
m = 9(9+2)
m = 9 x 11
m = 99

If n=10 then,
m = n(n+2)
m = 10(10+2)
m = 10 x 12
m = 120

If n=11 then,
m = n(n+2)
m = 11(11+2)
m = 11 x 13
m = 143

If n=12 then,
m = n(n+2)
m = 12(12+2)
m = 12 x 14
m = 168

Conclusion:
Chinese Checkers, just like chess, stimulates both the left and right hemispheres of the brain by
recognizing the di�erent colors and using logic to make the best move. Thanks to the visual stimuli and
patterns one’s required to keep track of while playing, the game also improves memory.

Chinese Checkers stimulates the brain and encourages innovative thinking to �gure out which marbles
to move and where to unclog the path for other of their marbles, thereby, improving their
problem-solving skills.



Similarly, this project has also made us think, keep track, and solve the problem at hand logically and
mathematically. As avid players of Chinese Checkers, we have navigated through one of our favourite
experiences mathematically with the help of our problem-solving skills in this project.

We have discovered the mathematical side of acing a linear version of Chinese Checkers by the
identi�cation of the relationship between the number of pairs of marbles(n) used and the number of
moves(m) required to exchange their positions: m= n(n+2) (or) m = n2+2n.

However, we are still in pursuit to �nd the formula to ace a game of normal Chinese Checkers. We
know it's already out there but �nding it mathematically on our own makes it a lot more enjoyable,
doesn’t it?
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Interpretation of i Using the Argand Plane

Abstract:
This project is my take on the question: Using the argand plane, interpret geometrically, the meaning

of i = and its integral powers.− 1

Introduction:

Imaginary Numbers

Imaginary numbers are an important mathematical concept; they extend the real number system to

the complex number system , in which at least one root for every nonconstant polynomial exists. An
imaginary number is a real number multiplied by the imaginary unit i, where i is a solution to the
quadratic equation x2 + 1 = 0. The imaginary number i is de�ned solely by the property that its square
is − 1: i2 = – 1. With i de�ned this way, it follows directly from algebra that i and – i are both square
roots of − 1. It is this property of i that we are going to interpret geometrically in this project.

Complex Numbers
An imaginary number bi can be added to a real number a to form a complex number of the form a +
bi, where the real numbers a and b are called, respectively, the real part and the imaginary part of the
complex number.

Argand Planes
The complex numbers can be represented geometrically on a two-dimensional plane with two
perpendicular axes representing the real and imaginary parts of the number respectively. Such a plane is
referred to as the complex plane, the Argand plane, or the Argand diagram.



An Argand diagram is a plot of complex numbers:
z = x + iy

represented by points (𝑥,𝑦) in Cartesian coordinates in the complex plane using the x-axis as the real
axis and y-axis as the imaginary axis.

Interpretation of i = and its Integral Powers:− 1

Construction
1. Draw two mutually perpendicular lines X X’ and Y Y’ interesting at the point O.
2. Using a compass with width 1 unit length, mark A on the OXwith O as center.
3. Now, using the same width and center O, rotate the compass through angles of 90º, 180º, 270º

and 360º and mark points A1, A2, A3 and A4 respectively, on OY, OX’, OY’ and OX.

Interpretation
1. The plane marked by XX’ and YY’ is a complex plane or argand plane and OA, OA1, OA2,

OA3, and OA4 denote complex numbers of the form z = x + iy.
2. Since OA, OA1, OA2, OA3, and OA4 are complex numbers:

OA = x + iy = 1 + i(0) = 1
OA1 = x + iy = 0 + i(1) = i
OA2 = x + iy = -1 + i(0) = -1
OA3 = x + iy = 0 + i(-1) = -i
OA4 = x + iy = 1 + i(0) = 1

3. Since i = ,− 1
OA = 1 = i0

OA1 = i = i * 1 = i1

OA2 = -1 = i * i = i2

OA3 = -i = i * -1 = i * i2 = i3

OA4 = 1 = (-1)2 = (i2)2 = i4



Note that each time we rotate OA by 90º, it is equivalent to multiplying OA by i. i is, therefore,
referred to as the multiplying factor for a rotation of 90º: OAn = in.

For any complex number z, rotation through n-right angles will be: zn = z * in. Therefore, through the
converse of this statement, we can say that multiplying a complex number by i or any of its integral
powers i n, is equivalent to rotation through n-right angles.

Conclusion:
Geometrically, i (= ) is referred to as the multiplying factor for a rotation of 90º. Every time we− 1
multiply a complex number by i, it is equivalent to rotation by 90º. Therefore, multiplying a complex
number z by any of i’s integral powers in, is equivalent to the rotation through n-right angles: z * in = zn.

This is the geometric meaning of i = and its integral powers.− 1
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Construction of Ellipses Using the Foci Method

Abstract:
This project is my take on the question: Use the foci property of an ellipse to construct an ellipse.

Introduction to Conics:
Conic sections have been studied for thousands of years and have provided a rich source of interesting
and beautiful results in Euclidean geometry. Conic sections are the shapes or curves that can be created
when a plane intersects a double-napped cone. In other words, conics are the cross sections of
double-napped cones. Depending on the angle of the plane with respect to the cone, a conic section
may be a circle, an ellipse, a parabola, or a hyperbola.

Types of Conics:
1. Ellipses: They are conic sections that look like elongated circles. They arise when the

intersection of the cone and plane is a closed curve.
2. Circles: They are special kinds of ellipses which are obtained when the cutting plane is parallel

to the plane of the generating circle of the cone; for a right cone, this means the cutting plane is
perpendicular to the axis.

3. Parabola: If the cutting plane is parallel to exactly one generating line of the cone, then the
conic is unbounded and is called a parabola.

4. Hyperbola: In the remaining case, the �gure is a hyperbola: the plane intersects both halves of
the cone, producing two separate unbounded U-shaped curves.

5. Degenerate Conics: There also exists a special category of conics called degenerate conics.
They are conics that do not have the usual properties of a conic. They are formed by planes
that pass through the vertex of the cone and are of three types: A singular point, a line, and a
degenerate hyperbola.



Focus, Directrix and Eccentricity:
Focuses or foci are special points with reference to which any of a variety of curves is constructed.
Directrix is a straight line that, together with the point known as the focus, serves to de�ne a conic
section. The distance to the directrix from any point of a conic section is in �xed ratio to the distance
from the same point to a focus.

It is also possible to describe all conic sections in terms of a single focus and a single directrix. A conic is
de�ned as the locus of points P for each of which the distance to the focus F divided by the distance to
the directrix(the distance from P to a �xed line L) is a �xed positive constant, called the eccentricity e.

The eccentricity of the conic section is de�ned as the distance from any point to its focus, divided by
the perpendicular distance from that point to its nearest directrix:

Eccentricity =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑓𝑜𝑐𝑢𝑠 𝑓𝑟𝑜𝑚 𝑎𝑛𝑦 𝑝𝑜𝑖𝑛𝑡 𝑜𝑛 𝑡ℎ𝑒 𝑐𝑜𝑛𝑖𝑐 𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑟𝑖𝑥 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑝𝑜𝑖𝑛𝑡

e =
𝑐
𝑎



The eccentricity value is constant for any conics. If 0 < e < 1 the conic is an ellipse, if e = 1 the conic is a
parabola, and if e > 1 the conic is a hyperbola. If the distance to the focus is �xed and the directrix is a
line at in�nity, the eccentricity is zero and the conic is a circle. If the eccentricity is in�nity, then it is of
a line.

Ellipse:
An ellipse as mentioned earlier is a closed curve that can be described as the locus of points for which
the sum of the distances to two given points or foci is constant. There are two types of ellipses:
horizontal and vertical.

An ellipse has two axes of symmetry:
1. The major axis, which is the line through (or line segment between) the two points most

distant from the center (vertices).
2. The minor axis, which is the line through (or line segment between) the two points least

distant from the center (co-vertices).
The line segments from the center to each vertex are called the semi-major axes, and the line segments
from the center to each co-vertex are called the semi-minor axes. The foci of an ellipse, E and F, lie on
the ellipse's major axis and are equidistant from the center.

The general equation for a horizontal ellipse (a > b) is:

(𝑥−ℎ)2

𝑎2  +  (𝑦−𝑘)2

𝑏2  =  1

while the general equation for a vertical ellipse (a < b) is:



(𝑥−ℎ)2

𝑏2  +  (𝑦−𝑘)2

𝑎2  =  1

where (h, k) is the center, a is the length of the semi-major axis, and b is the length of the semi-minor
axis.

Often the above equation is written as follows:

𝑥2

𝑎2  +  𝑦2

𝑏2  =  1

This is called the standard form of the equation of an ellipse, such that the ellipse is centered at the
origin (0, 0). The distance from the center to a focus c of an ellipse can be found by using the formula
c2 = a2 – b2.

Construction of Ellipse:
There exists multiple ways to construct an ellipse including the concentric circles method, the
rectangular method, the trammel method, the eccentricity method, etc. The one we are going to
employ here is the foci method.

Principle:
The foci method of construction of an ellipse uses the focal property of the ellipse for its construction.
According to this property, the sum of the distances from any point P on the ellipse to these two foci F1
and F2 is equal to the length of the major axis, ie. F1P + F2P = 2a.



To understand this property, let us consider an ellipse centered at C(0, 0) with an equation:
𝑥2

𝑎2  +  𝑦2

𝑏2  =  1

Let P(x, y) be any point on the ellipse and let MPM' be the perpendicular through P on directrices MD
and M'D'. Additionally, let there be a line PK which is perpendicular to the x-axis. Now, by the
de�nition of the conics, we get:

e =
𝐹

1
𝑃

𝑃𝑀
⇒F1P = e ∙ PM
⇒F1P = e ∙ KD
⇒ F1P = e (CD – CK)

⇒ F1P = e ( – x)𝑎
𝑒

⇒F1P = a – ex ……(i)

e =
𝐹

2
𝑃

𝑃𝑀'
⇒F2P = e ∙ PM'
⇒ F2P = e ∙ (KD')
⇒ F2P = e (CD' + CK)

⇒ F2P = e ( + x)𝑎
𝑒

⇒F2P = a + ex ……(ii)

[Since the distance from the center to the directrix in an ellipse can be found by using the formula 𝑎
𝑒

(where a is the distance to the directrix from the point P).]
On adding (i) and (ii),

F1P + F2P = a – ex + a + ex



F1P + F2P = 2a
Therefore, the sum of the distances from any point P on the ellipse to these two foci F1 and F2 is equal
to the length of the major axis. And we will use this property to construct the ellipse.

Process:
The foci method of ellipse construction involves plotting a series of points along the circumference of
the ellipse by drawing a series of intersecting arcs using the foci on the major axis as centers. To
construct an ellipse using the foci method, the following steps are followed:

1. Lay out horizontal (AB) and vertical axes (CD) that intersect at right angles.
2. Locate the foci (F1, F2) by setting the compass to one half distance of the major axis AB and

striking arcs along AB using C as the center.
3. Mark a minimum of ten equal distances between F1 and F2. The more distances marked, the

more accurate the ellipse construction.
4. With F1 as center, and radius A1, A2, A3, etc. draw arcs above and below line AB. And with F2

as center, and radius B1, B2, B3, etc. draw arcs to intersect those struck from F1.
5. Continue plotting points this way until all points form an ellipse circumference.
6. Once all points are plotted, connect the points using french curves to form an ellipse.

Construction:

Proof:
To prove and ensure that the above construction was indeed done using the focal property of an ellipse,
let’s consider the following:



S.No. Argument Reason

1
F1, F2 are the foci of
the ellipse

By construction ie.
● Since the compass width set fromOB was used to draw CF2 and

CF1, line segments CF2 and OB and line segments CF1 and OB
are congruent. Thus, the line segments CF2 and CF1 are
congruent.

● Since OB is half of AB, CF1 + CF2 = AB
● Therefore, according to the focal property of an ellipse, F1

and F2 are the foci of the ellipse because from any point C on
the ellipse, the sum of the distances from C to the two foci F1
and F2 is equal to the length of the major axis AB.

2
q = A1 and p = B1
s = A2 and r = B2

The compass width used to draw q was A1 and that for p was B1.
Similarly, the compass width used to draw s
was A2 and for r it was B2.

3
q + p = A1 + B1 and
s + r = A2 + B2

According to 2.

4
q + p = AB
s + r = AB

A1 + B1 = AB.
A2 + B2 = AB



5

Length between any
point P and F1 +
Length between any
point P and F2 = AB

All other plots of the ellipse pointed above and below the major axis
were also plotted in the same manner as the ones involved in p & q and
in r & s.

6 The �gure is an ellipse
According to the focal property of an ellipse, the sum of the distances
from any point P on the ellipse to the two foci F1 and F2 is equal to the
length of the major axis AB.

(QED)

THUS, ITHAS BEEN PROVENTHATTHEABOVECONSTRUCTION ISMATHEMATICALLY
ACCURATE ACCORDINGTOTHE FOCAL PROPERTYOF AN ELLIPSE ANDTHATTHE

ENTIRETYOF THECONSTRUCTIONWAS BASEDONTHE SAME PROPERTY.

Applications of Ellipse:
The shape of an ellipse is formed when a cone is cut at an angle. If you tilt a glass of water, the resulting
shape of the surface of the water is also an ellipse. You can also see ellipses when a hula hoop or tire of a
car looks askew. Though these are examples of optical ellipses, the ellipse also has practical uses in real
life:

Rugby Ball:
Rotate an ellipse about its major axis, and you obtain a rugby ball which is easier to pass.



Furniture and Carpentry:
Elliptical tables, book-cases, vent pipes, etc. look elegant and hence the shape is used often in carpentry.

Food:
Foods are cut to form ellipses, o�ering a re�ned touch to simple foods. Cutting a carrot, cucumber or
sausage at an angle to its main axis results in an elliptical slice. Wraps – tortillas wrapped around a
�lling – are also often cut into two elliptical wedges. The sharp focus of the ellipse gives these everyday
food items a more elegant look.

Orbits of Planets and Satellites:
The path of each planet is an ellipse with the Sun at one focus. In physics, this is known as Kepler's �rst
law of planetary motion. The orbits of planets, satellites, moons, and comets, are also elliptical.



Whispering Gallery:
A focus is one of two points that de�nes the shape and size of the ellipse; they're located on the major
axis of the ellipse, at equidistant points from the center of that axis. If light or a sound wave emanates
from one focus of a real-life ellipse, it will be re�ected to the other focus. This property is used to create
whispering galleries, which are structures that allow someone who is whispering in one area to be heard
clearly by someone in another area but not by anyone else. Famous examples of whispering galleries
include the United States Statuary Capitol Hall, Museum of Science and Industry in Chicago,
London's St. Paul's Cathedral and India’s Gol Gumbaz.

Lithotripsy:
Lithotripsy is a surgery-free method of destroying a kidney stone that uses the properties of the ellipse's
two foci. For a lithotripsy treatment the patient lies in an elliptical tub, with the kidney stone aligned to
one of the foci of the ellipse. Shockwaves emanating from the other focus concentrate on the kidney
stone, reducing it to debris as small as sand that can pass through the body without discomfort.



Elliptical Pool Table:
The re�ection property of the ellipse is useful in an elliptical pool table — if you hit the ball so that it
goes through one focus, it will re�ect o� the ellipse and go into the hole which is located at the other
focus.



Elliptical Trainers:
An elliptical training machine simulates the motion of running or walking, o�ering a low-impact
cardio workout. When you walk or run in an elliptical trainer, your foot describes an elliptical path. An
elliptical machine can be motor-driven or user-driven, and some elliptical trainers also feature
handlebars that one can push or pull on to help move the foot pedals through their elliptical path.

Others:
The shapes of boat keels, rudders, and some aviation wings, can all be represented by ellipses.

Conclusion:
We have, in this project, constructed an ellipse using the focal property of ellipses. However, an ellipse
is not simply about mathematics or how we plot it. Ellipse has its own signi�cance; a signi�cance that
can produce something extraordinary; a signi�cance that can delight others with its beauty and
uniqueness. We have seen its immense uses in the real world, which led to this signi�cant role in the
mathematical world.
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Addition and Multiplication in Integer Modulo Integer Number Systems

Abstract:
This project explores addition and multiplication in the integer modulo integer number

systems. It includes veri�cation of whether addition and multiplication are binary operations in ℤ
modulo n number systems using composition tables as well as the veri�cation of the existence of the
properties of binary operations in them.

A.1 Introduction

A.1.1. Some De�nitions
Here are some of the de�nitions of terms used ahead in the paper:

a. Sets:
Sets are a collection of well-de�ned objects or elements. A set is represented by a capital

letter symbol and elements are written within a curly bracket {...} each separated from one
another by a comma ‘ , ’.

b. Relations:
A relation is a set of ordered pairs that establishes a connection or association between

elements of two sets. Relations can be represented using tables, graphs, or formulas. For
example, a relation R between sets A and B can be represented as R = {(a, b) | a∈A, b∈ B}.

c. Functions:
A function is a relation between two sets where each input element from the �rst set is

associated with exactly one output element from the second set. It assigns a unique output for
every input. Functions are denoted by lowercase letters and can be represented using equations
or mappings. For example, f : A→ B denotes a function f that maps elements from set A to set
B.

d. Operation:
An operation is a mathematical procedure that combines one or more elements to

produce a result. An operation can be a relation, function or combination of both.



e. Binary Operation:
A binary operation is an operation that takes two elements from a set and combines

them to produce a single element from the same set.

f. Diophantine Equation:
A Diophantine equation is an equation, typically a polynomial equation in two or

more unknowns with integer coe�cients, such that the only solutions of interest are the
integer ones. A linear Diophantine equation equates a constant to the sum of two or more
monomials, each of degree one. It is of the form:

𝑎𝑥 + 𝑏𝑦 = 𝑐
where a, b, c are integers. A linear Diophantine of the above form is said to have solutions i�

.𝑔𝑐𝑑(𝑎, 𝑏)| 𝑐

A.1.2. Integers and their Axioms
The integers ( ) are a set of numbers with two operations, addition ‘+’ and multiplication ‘ ’. Thereℤ ·
exists a set of fundamental properties that de�ne the behavior of the integers under addition and
multiplication called axioms of integers.

The axioms of integers, also known as the axioms of arithmetic, include:
I1. Closure: is closed under addition and multiplication, ie.ℤ

∀𝑎, 𝑏 ∈ ℤ ,  𝑎 + 𝑏 ∈ ℤ
and: .∀𝑎, 𝑏 ∈ ℤ ,  𝑎 · 𝑏 ∈ ℤ

I2. Associativity: and .∀𝑎, 𝑏, 𝑐 ∈ ℤ , (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) (𝑎𝑏)𝑐 = 𝑎(𝑏𝑐)
I3. Commutativity: and .∀𝑎, 𝑏 ∈ ℤ , 𝑎 + 𝑏 = 𝑏 + 𝑎 𝑎𝑏 = 𝑏𝑎
I4. Distributivity: and .∀𝑎, 𝑏, 𝑐 ∈ ℤ , (𝑎 + 𝑏)𝑐 = 𝑎𝑐 + 𝑏𝑐 𝑐(𝑎 + 𝑏) = 𝑐𝑎 + 𝑐𝑏
I5. Existence of additive identity (0):The re is a unique element such that0 ∈ ℤ

.∀𝑎 ∈ ℤ , 𝑎 + 0 = 0 + 𝑎 = 𝑎
I6. Existence of multiplicative identity (1):There is a unique element such that1 ∈ ℤ

.∀𝑎 ∈ ℤ , 𝑎 · 1 = 1 · 𝑎 = 𝑎
I7. Existence of additive inverse: such that∀𝑎 ∈ ℤ , ∃! (− 𝑎) ∈ ℤ

.𝑎 + (− 𝑎) = (− 𝑎) + 𝑎 = 0
I8. Existence of natural numbers:There is a unique non-empty subset such that:ℕ ⊆ ℤ

a. and .∀𝑎, 𝑏 ∈ ℕ , 𝑎 + 𝑏 ∈ ℕ 𝑎𝑏 ∈ ℕ
b. , exactly one of the following is true: .∀𝑎 ∈ ℕ 𝑎 ∈ ℕ , (− 𝑎) ∈ ℕ,  𝑎 = 0



I9. Well-ordering principle:Any non-empty subset has a least element.𝑆 ⊆ ℤ

From axiom 8, we can say that is a set of numbers formed by the union of natural numbers {1, 2, 3,ℤ
4, … , }, zero {0} and additive inverses of the natural numbers {–1, –2, –3, … , – } ie.∞ ∞

={– , … , –3, –2, –1, 0, 1, 2, 3, … , }.ℤ ∞ ∞

A.1.3. Binary Operations and their Properties
Binary Operations as de�ned earlier (in Section A.1.1), is an operation that takes two elements from
a set and combines them to produce a single element from the same set.

To determine if an operation is binary or not, we need to ensure that it satis�es certain criteria:
R1.The operation must take exactly two elements from a set as input/operands.
R2.The operation must produce a single, well-de�ned, unique output.
R3.The operation must exhibit closure ie. the \/;/\;;’result of the operation should belong to the

same set from which the input elements are taken.

A binary operation ‘ ’ on a non-empty set A can therefore also be de�ned as a function from A × A*
to A, ie.:

* : A × A→A.

Such binary operations exhibit some properties that describe speci�c characteristics or behaviors
exhibited by the operation when applied to elements of a set. They include:
P1)Closure: A binary operation ‘*’ on a set is said to exhibit closure if for any elements a and b in𝑆

S, the result of the operation a * b is also an element of .𝑆
P2)Associativity: A binary operation ‘*’ on a set is said to be associative if a, b,c , (a * b) * c𝑆 ∀ ∈ 𝑆

= a * (b * c).



P3)Commutativity: A binary operation ‘*’ on a set is said to be commutative (or exhibit𝑆
commutativity) if a, b , a * b = b * a.∀ ∈ 𝑆

P4)Distributivity: A binary operation ‘*’ is distributive over another binary operation ‘#’ if it
means that (a # b) * c = (a * c) # (b * c), a, b,c .∀ ∈ 𝑆

P5) Identity Element: An element e is called an identity element for a binary operation ‘*’ i�∈ 𝑆 ∀
a , a * e = e * a = a.∈ 𝑆

P6) Inverse Elements: If there exists an element b such that a * b = b * a = e (identity element),∈ 𝑆
then b is called the inverse element of awith respect to the binary operation ‘*’.

P7) Idempotency: An operation is idempotent if applying the operation multiple times to an
element does not change its value after the �rst application. In other words,

. An element is called idempotent under * if .𝑎 * 𝑎 = 𝑎,  ∀𝑎 ∈ 𝑆 𝑎 ∈ 𝑆 𝑎 * 𝑎 = 𝑎
P8)Cancellation: A binary operation * in a non-empty set has the cancellation property if𝑆

, we have:∀𝑎, 𝑏, 𝑐 ∈ 𝑆
a * b = a * c⇒ b = c [Left Cancellation]
b * a = c * a⇒ b = c [Right Cancellation]

From the axioms of integers (see section A.1.2), we know that addition and multiplication are binary
operations in . Addition in follows all the properties listed above except (P7) or idempotency.ℤ ℤ
However, it is to be noted that 0 is idempotent over addition in . On the other hand, multiplicationℤ
follows all the properties listed above except (P6) and (P7). However, it is to be noted that 0, 1 are
idempotent over multiplication in and (P8) is true i� a 0.ℤ ≠

A.1.4. Modular Arithmetics and their Properties
Modular arithmetic is a system of arithmetic that deals with integers and their remainders when
divided by a �xed positive integer called the modulus. For any n , the integers modulo n are the∈ ℤ
set of least positive residues of the set of residue classes modulo n, ie.

}ℤ/𝑛ℤ =  {0, 1, 2,  .  .  .  ,  (𝑛 − 1)

It has some important properties and de�nitions with respect to modular arithmetics:
M1. Congruence: In modular arithmetic, we use the symbol "≡" (congruent) to denote equivalence

modulo the modulus. For all a, b , a ≡ b (mod n) means that a and b have the same∈ ℤ
remainder when divided by n. And for all a, b, n such that n 0,we write a ≡ b (mod n)∈ ℤ ≠
i� n | (a – b).



M2. Modular Addition: For any integers a, b (for some ), then a + b ≡ (a + b) (mod∈ ℤ/𝑛ℤ 𝑛 ∈ ℤ
n). In other words, if two numbers a, b belong to the set of integers modulo , then𝑛 ∈ ℤ 
addition of a and b gives the remainder produced by the sum of a and bmodulo .𝑛

Proof:
Let a, b such that and where and .∈ ℤ 𝑎 ≡ 𝑥(𝑚𝑜𝑑 𝑛) 𝑏 ≡ 𝑦(𝑚𝑜𝑑 𝑛) 𝑛 ∈ ℤ 𝑛 > 1
Then:

x, y (by M1)∈ ℤ/𝑛ℤ
n | => for some k (by M1)𝑎 − 𝑥 𝑎 − 𝑥 = 𝑛𝑘 ∈ ℤ

=> …(i)𝑎 = 𝑥 + 𝑛𝑘
n | => for some l (by M1)𝑏 − 𝑦 𝑏 − 𝑦 = 𝑛𝑙 ∈ ℤ

=> …(ii)𝑏 = 𝑦 + 𝑛𝑙
Adding (i) and (ii), we get:

a + b = ( ) + ` (by I1)𝑥 + 𝑛𝑘 (𝑦 + 𝑛𝑙)
=> a + b = (by I2 and I3)(𝑥 + 𝑦) + (𝑛𝑘 + 𝑛𝑙)
=> a + b = (by I4)(𝑥 + 𝑦) + 𝑛(𝑘 + 𝑙)
=> a + b – = (by I1)(𝑥 + 𝑦) [(𝑥 + 𝑦) + 𝑛(𝑘 + 𝑙)] − (𝑥 + 𝑦)
=> a + b – = (by I2, I3, I7)(𝑥 + 𝑦) 𝑛(𝑘 + 𝑙)

Since by I1. Then:𝑘, 𝑙 ∈ ℤ,  𝑘 + 𝑙 ∈ ℤ
=> a + b – (by divisibility)𝑛| (𝑥 + 𝑦)
=> a + b (mod n) (by M1)≡ (𝑥 + 𝑦)

=> + ) ◻𝑥(𝑚𝑜𝑑 𝑛) 𝑦(𝑚𝑜𝑑 𝑛) ≡ (𝑥 + 𝑦) (𝑚𝑜𝑑 𝑛

M3. Modular Multiplication: For any integers a, b (for some ), then a b ≡ (a b)∈ ℤ/𝑛ℤ 𝑛 ∈ ℤ · ·
(mod n). In other words, if two numbers a, b belong to the set of integers modulo , then𝑛 ∈ ℤ 
multiplication of a and b gives the remainder produced by the product of a and bmodulo .𝑛

Proof:
Let a, b such that and where and .∈ ℤ 𝑎 ≡ 𝑥(𝑚𝑜𝑑 𝑛) 𝑏 ≡ 𝑦(𝑚𝑜𝑑 𝑛) 𝑛 ∈ ℤ 𝑛 > 1
Then:

x, y (by M1)∈ ℤ/𝑛ℤ
n | => for some k (by M1)𝑎 − 𝑥 𝑎 − 𝑥 = 𝑛𝑘 ∈ ℤ

=> …(i)𝑎 = 𝑥 + 𝑛𝑘
n | => for some l (by M1)𝑏 − 𝑥 𝑏 − 𝑦 = 𝑛𝑙 ∈ ℤ



=> …(ii)𝑏 = 𝑦 + 𝑛𝑙

Since by I1 and since by I7. Now, since:𝑘, 𝑛 ∈ ℤ,  𝑛𝑘 ∈ ℤ 𝑛𝑘 ∈ ℤ,  (− 𝑛𝑘) ∈ ℤ.
=> (by I1)𝑎,  (− 𝑛𝑘) ∈ ℤ 𝑎 + (− 𝑛𝑘) ∈ ℤ
=> (by I1)𝑎 − 𝑛𝑘 ∈ ℤ
=> (from eq.(i))𝑥 ∈ ℤ

Similarly, WLOG, from the given and eq.(ii), we can say that .𝑦 ∈ ℤ

Now,Multiplying (i) and (ii), we get:
ab = ( ) ` (by I1)𝑥 + 𝑛𝑘 (𝑦 + 𝑛𝑙)

=> ab = (by I4)(𝑥𝑦 + 𝑥𝑛𝑙) + (𝑦𝑛𝑘 + 𝑛2𝑘𝑙)
=> ab = (by I3, I4)(𝑥𝑦) + 𝑛(𝑥𝑙 + 𝑦𝑘 + 𝑛𝑘𝑙)
=> ab – = (by I1)(𝑥𝑦) [(𝑥𝑦) + 𝑛(𝑥𝑙 + 𝑦𝑘 + 𝑛𝑘𝑙)] − (𝑥𝑦)
=> ab – = (by I2, I3, I7)(𝑥𝑦) 𝑛(𝑥𝑙 + 𝑦𝑘 + 𝑛𝑘𝑙)

Since by I1. Then:𝑥, 𝑦, 𝑘, 𝑙 ∈ ℤ,  𝑥𝑙, 𝑦𝑘, 𝑛𝑘𝑙 ∈ ℤ
=> ab – (by divisibility)𝑛| (𝑥𝑦)
=> ab (mod n) (by M1)≡ (𝑥𝑦)

=> ) ◻𝑥(𝑚𝑜𝑑 𝑛) · 𝑦(𝑚𝑜𝑑 𝑛) ≡ (𝑥𝑦) (𝑚𝑜𝑑 𝑛

A.1.5. Cayley Table
A Cayley table, also known as composition table, is a technique of visual representation used to
describe an algebraic structure (usually a �nite group) by representing the results of a binary
operation on a set in the form of a square array. It provides a systematic way of showing the
outcomes of combining elements from a set using a speci�c operation.

This table can be formed as follows:
i. Write the elements of the set (which are �nite in number) in the column and row headers.
ii. Write the element associated with the ordered pair at the intersection of the row headed(𝑎

𝑖
 , 𝑎

𝑗
)

by and the column headed by . Thus, ( th entry on the left) (binary operator) ( th entry on the𝑎
𝑖

𝑎
𝑗

𝑖 𝑗

top) = entry where the th row and th column intersect.𝑖 𝑗

For example, let's consider a set {a, b, c, d} and a binary operation ‘ ’ de�ned on this set. The Cayleyα
table for this operation would have four rows and four columns. Each cell in the table would contain



the result of applying the operation ‘ ’ to the corresponding row and column elements. The tableα
might look as follows:

α a b c d

a a aα b aα c aα d aα

b a bα b bα c bα d bα

c a cα b cα c cα d cα

d a dα b dα c dα d dα

A.2. Binary Operations in ℤ/𝑛ℤ
We already know that addition and multiplication are binary operations in . But are they binaryℤ
operations in modulo 2? In modulo 3? In modulo 4? In modulo 5?ℤ ℤ ℤ ℤ
In modulo any other integer ? Let’s explore and verify these using Cayley tables.ℤ 𝑛 > 1

A.2.1. Addition in ℤ/𝑛ℤ
Let’s �rst verify if addition is a binary operation in modulo n systems.ℤ

In modulo 2 ( ):ℤ ℤ/2ℤ
For , the Cayley table for addition is:ℤ/2ℤ = {0, 1}

+ 0 1

0 0 1

1 1 0

Is addition a binary operation in ?ℤ/2ℤ

A.1.2 R1 R2 R3

Yes/No Yes Yes Yes

Therefore, yes, addition is a binary operation in .ℤ/2ℤ

What properties of binary operations does addition exhibit in ?9ℤ/2ℤ

A.1.2 P1 P2 P3 P4 P5 P6 00P7 P8



Yes/No Yes Yes Yes No Yes (0) Yes No (but 0 is
idempotent)

Yes

In modulo 3 ( ):ℤ ℤ/3ℤ
For , the Cayley table for addition is:ℤ/3ℤ = {0, 1, 2}

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

Is addition a binary operation in ?ℤ/3ℤ

A.1.2 R1 R2 R3

Yes/No Yes Yes Yes

Therefore, yes, addition is a binary operation in .ℤ/3ℤ

What properties of binary operations does addition exhibit in ?ℤ/3ℤ

A.1.2 P1 P2 P3 P4 P5 P6 P7 P8

Yes/No Yes Yes Yes No Yes (0) Yes No (but 0 is
idempotent)

Yes

In modulo 4 ( ):ℤ ℤ/4ℤ
For , the Cayley table for addition is:ℤ/4ℤ = {0, 1, 2, 3}

+ 0 1 2 3

0 0 1 2 3

1 1 2 3 0

2 2 3 0 1

3 3 0 1 2

Is addition a binary operation in ?ℤ/4ℤ



A.1.2 R1 R2 R3

Yes/No Yes Yes Yes

Therefore, yes, addition is a binary operation in .ℤ/4ℤ

What properties of binary operations does addition exhibit in ?ℤ/4ℤ

A.1.2 P1 P2 P3 P4 P5 P6 P7 P8

Yes/No Yes Yes Yes No Yes (0) Yes No (but 0 is
idempotent)

Yes

In modulo 5 ( ):ℤ ℤ/5ℤ
For , the Cayley table for addition is:ℤ/5ℤ = {0, 1, 2, 3, 4}

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

Is addition a binary operation in ?ℤ/5ℤ

A.1.2 R1 R2 R3

Yes/No Yes Yes Yes

Therefore, yes, addition is a binary operation in .ℤ/5ℤ

What properties of binary operations does addition exhibit in ?ℤ/5ℤ

A.1.2 P1 P2 P3 P4 P5 P6 P7 P8

Yes/No Yes Yes Yes No Yes (0) Yes No (but 0 is
idempotent)

Yes

In modulo n ( ):ℤ ℤ/𝑛ℤ



For , the Cayley table for addition is:ℤ/𝑛ℤ = {0, 1, 2, 3,  .  .  .,  (𝑛 − 1)}

+ 0 1 2 3 ... n – 1

0 0 1 2 3 ... n – 1

1 1 2 3 4 ... n

2 2 3 4 5 ... n + 1

3 3 4 5 6 ... n + 2

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

…
…
…

.

.

.

n – 1 n – 1 n n + 1 n +2 ... 2n – 2

Proposition 1. Addition is a binary operation in for any integer n > 0.ℤ/𝑛ℤ

Proof:
In order to prove the above proposition we need to prove that addition in adheres to the belowℤ/𝑛ℤ
principles:

i. It must take exactly two elements from as input.ℤ/𝑛ℤ
ii. When applied to the two input elements, it must yield a single, unique output.
iii. It must exhibit closure.

By def n of addition in modular arithmetics (see M2 in section A.1.4.):

+ )𝑥(𝑚𝑜𝑑 𝑛) 𝑦(𝑚𝑜𝑑 𝑛) ≡ (𝑥 + 𝑦) (𝑚𝑜𝑑 𝑛
From this it can be observed that addition in has exactly two inputs from the set. Therefore, (i)ℤ/𝑛ℤ
is true.

Now, by division algorithm, we can write:
where𝑥 + 𝑦 =  𝑛𝑞 + 𝑟 0 ≤ 𝑟 < 𝑞

Takingmod n on both sides:
(by M1)(𝑥 + 𝑦)(𝑚𝑜𝑑 𝑛) ≡ 𝑟 (𝑚𝑜𝑑 𝑛)

Then:



+ )𝑥(𝑚𝑜𝑑 𝑛) 𝑦(𝑚𝑜𝑑 𝑛) ≡ 𝑟 (𝑚𝑜𝑑 𝑛

This shows that if x, y then x + y and thus, addition in is closed. This shows∈ ℤ/𝑛ℤ ∈ ℤ/𝑛ℤ ℤ/𝑛ℤ
that (iii) is true.

Additionally, since the division algorithm states that r is unique for every (x+y), n and q, )𝑟 (𝑚𝑜𝑑 𝑛
and in turn + is also unique for every x, y. Therefore, showing that (ii) is true𝑥(𝑚𝑜𝑑 𝑛) 𝑦(𝑚𝑜𝑑 𝑛)
as well.

Altogether, we can say addition is a binary operation in ◻ℤ/𝑛ℤ

Proposition 2. Addition adheres to the following properties of binary operations in (for anyℤ/𝑛ℤ
integer n > 1):
i. Closure: ∀𝑎, 𝑏 ∈ ℤ/𝑛ℤ ,  𝑎 + 𝑏 ∈ ℤ/𝑛ℤ
ii. Associativity: .∀𝑎, 𝑏, 𝑐 ∈ ℤ/𝑛ℤ , (𝑎 + 𝑏) + 𝑐 ≡ 𝑎 + (𝑏 + 𝑐)
iii. Commutativity: .∀𝑎, 𝑏 ∈ ℤ/𝑛ℤ , 𝑎 + 𝑏 ≡ 𝑏 + 𝑎
iv. Existence of additive identity: There is a unique element such that0 ∈ ℤ/𝑛ℤ

.∀𝑎 ∈ ℤ/𝑛ℤ , 𝑎 + 0 ≡ 0 + 𝑎 ≡ 𝑎
v. Existence of additive inverse: such that∀𝑎 ∈ ℤ/𝑛ℤ , ∃! (− 𝑎) ∈ ℤ/𝑛ℤ

.𝑎 + (− 𝑎) ≡ (− 𝑎) + 𝑎 ≡ 0
vi. Cancellation: If , we have:∀𝑎, 𝑏, 𝑐 ∈ ℤ/𝑛ℤ 

a + b a + c⇒ b c and b + a c + a⇒ b c≡ ≡ ≡ ≡

Proof:
i. To prove: .∀𝑎, 𝑏 ∈ ℤ/𝑛ℤ ,  𝑎 + 𝑏 ∈ ℤ/𝑛ℤ

See proof of proposition 1.

ii. To prove: .∀𝑎, 𝑏, 𝑐 ∈ ℤ/𝑛ℤ , (𝑎 + 𝑏) + 𝑐 ≡ 𝑎 + (𝑏 + 𝑐)
This can alternatively be written as: (𝑎 + 𝑏) + 𝑐 ≡ 𝑎 + (𝑏 + 𝑐)(𝑚𝑜𝑑 𝑛).
or: [𝑎(𝑚𝑜𝑑 𝑛) + 𝑏(𝑚𝑜𝑑 𝑛)] + 𝑐(𝑚𝑜𝑑 𝑛) ≡ 𝑎(𝑚𝑜𝑑 𝑛) + [𝑏(𝑚𝑜𝑑 𝑛) + 𝑐(𝑚𝑜𝑑 𝑛)].

Let . Then:𝑎, 𝑏, 𝑐 ∈ ℤ
[ [ (by M2)𝑎(𝑚𝑜𝑑 𝑛) + 𝑏(𝑚𝑜𝑑 𝑛)] + 𝑐(𝑚𝑜𝑑 𝑛) ≡ (𝑎 + 𝑏)(𝑚𝑜𝑑 𝑛)] + 𝑐(𝑚𝑜𝑑 𝑛)

(by M2)≡ [(𝑎 + 𝑏) + 𝑐](𝑚𝑜𝑑 𝑛)
(by I2)≡ [𝑎 + (𝑏 + 𝑐)](𝑚𝑜𝑑 𝑛)



(by M2)≡ 𝑎(𝑚𝑜𝑑 𝑛) + [(𝑏 + 𝑐)(𝑚𝑜𝑑 𝑛)]
(by M2)≡ 𝑎(𝑚𝑜𝑑 𝑛) + [𝑏(𝑚𝑜𝑑 𝑛) + 𝑐(𝑚𝑜𝑑 𝑛)]

iii. To prove: .∀𝑎, 𝑏 ∈ ℤ/𝑛ℤ , 𝑎 + 𝑏 ≡ 𝑏 + 𝑎
This can alternatively be written as: 𝑎 + 𝑏 ≡ 𝑏 + 𝑎(𝑚𝑜𝑑 𝑛).
or: 𝑎(𝑚𝑜𝑑 𝑛) + 𝑏(𝑚𝑜𝑑 𝑛) ≡ 𝑏(𝑚𝑜𝑑 𝑛) + 𝑎(𝑚𝑜𝑑 𝑛).

Let . Then:𝑎, 𝑏 ∈ ℤ
(by M2)𝑎(𝑚𝑜𝑑 𝑛) + 𝑏(𝑚𝑜𝑑 𝑛) ≡ [𝑎 + 𝑏](𝑚𝑜𝑑 𝑛)
(by I3)≡ [𝑏 + 𝑎](𝑚𝑜𝑑 𝑛)

(by M2)≡ 𝑏(𝑚𝑜𝑑 𝑛) + 𝑎(𝑚𝑜𝑑 𝑛)

iv. To prove: There is a unique element such that a + 0 0 + a a.0 ∈ ℤ/𝑛ℤ ∀𝑎 ∈ ℤ/𝑛ℤ, ≡ ≡
This can alternatively be written as: 𝑎 + 0 ≡ 0 + 𝑎 ≡ 𝑎  (𝑚𝑜𝑑 𝑛).
or: 𝑎(𝑚𝑜𝑑 𝑛) + 0 ≡ 0 + 𝑎(𝑚𝑜𝑑 𝑛) ≡ 𝑎(𝑚𝑜𝑑 𝑛).

Let . Then:𝑎 ∈ ℤ
(from part iii)𝑎(𝑚𝑜𝑑 𝑛) + 0 ≡ 0 + 𝑎(𝑚𝑜𝑑 𝑛)

and: (byM2)𝑎(𝑚𝑜𝑑 𝑛) + 0 ≡ [𝑎 + 0](𝑚𝑜𝑑 𝑛)
(by I5)≡ [𝑎](𝑚𝑜𝑑 𝑛)

Combining both: 𝑎(𝑚𝑜𝑑 𝑛) + 0 ≡ 0 + 𝑎(𝑚𝑜𝑑 𝑛) ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Let’s assume for contradiction that more than one additive identity in and let them be∃ ℤ/𝑛ℤ
and . Then for all a :𝑒

1
𝑒

2
∈ ℤ/𝑛ℤ

a (mod n) + a (mod n)𝑒
1
≡

Since , substituting a = , we get:𝑒
2

∈ ℤ/𝑛ℤ 𝑒
2

(mod n)𝑒
2

+ 𝑒
1
≡ 𝑒

2

But since is also an additive identity,𝑒
2

(mod n)𝑒
2

+ 𝑒
1
≡ 𝑒

1

is also true.

Equating both of the above equations we get:
(mod n)𝑒

1
≡ 𝑒

2



which is a contradiction. Therefore, additive identity in is unique and sinceℤ/𝑛ℤ
is true, the additive identity must be only𝑎(𝑚𝑜𝑑 𝑛) + 0 ≡ 0 + 𝑎(𝑚𝑜𝑑 𝑛) ≡ 𝑎(𝑚𝑜𝑑 𝑛)

0.

v. To prove: such that .∀𝑎 ∈ ℤ/𝑛ℤ , ∃! (− 𝑎) ∈ ℤ/𝑛ℤ 𝑎 + (− 𝑎) ≡ (− 𝑎) + 𝑎 ≡ 0
This can alternatively be written as: 𝑎 + (− 𝑎) ≡ (− 𝑎) + 𝑎 ≡ 0  (𝑚𝑜𝑑 𝑛).
or: 𝑎(𝑚𝑜𝑑 𝑛) + (− 𝑎)(𝑚𝑜𝑑 𝑛) ≡ (− 𝑎)(𝑚𝑜𝑑 𝑛) + 𝑎(𝑚𝑜𝑑 𝑛) ≡ 0(𝑚𝑜𝑑 𝑛).

Let . Then:𝑎 ∈ ℤ
(from part iii)𝑎(𝑚𝑜𝑑 𝑛) + (− 𝑎)(𝑚𝑜𝑑 𝑛) ≡ (− 𝑎)(𝑚𝑜𝑑 𝑛) + 𝑎(𝑚𝑜𝑑 𝑛)

and: (byM2)𝑎(𝑚𝑜𝑑 𝑛) + (− 𝑎)(𝑚𝑜𝑑 𝑛) ≡ [𝑎 + (− 𝑎)](𝑚𝑜𝑑 𝑛)
(by I7)≡ [0](𝑚𝑜𝑑 𝑛)

Combining both:
𝑎(𝑚𝑜𝑑 𝑛) + (− 𝑎)(𝑚𝑜𝑑 𝑛) ≡ (− 𝑎)(𝑚𝑜𝑑 𝑛) + 𝑎(𝑚𝑜𝑑 𝑛) ≡ 0(𝑚𝑜𝑑 𝑛)

Let’s assume for contradiction that more than one additive inverse for a and let∃ ∈ ℤ/𝑛ℤ
them be and . Then:𝑎

1
𝑎

2

+ 0 (mod n) and + 0 (mod n) …(i)𝑎 𝑎
1
≡ 𝑎 𝑎

2
≡

We know that:
+ 0 (mod n) (from part iv)𝑎

1
≡ 𝑎

1

(mod n) (from eq. (i))𝑎
1
≡ 𝑎

1
+ (𝑎 + 𝑎

2
)

(mod n) (by part ii and iii)𝑎
1
≡ (𝑎 + 𝑎

1
) + 𝑎

2
 

(mod n) (from eq. (i))𝑎
1
≡ 0 + 𝑎

2
 

(mod n) (from part iv)𝑎
1
≡ 𝑎

2
 

which is a contradiction. Therefore, additive inverse for a in is unique and sinceℤ/𝑛ℤ
is true, there𝑎(𝑚𝑜𝑑 𝑛) + (− 𝑎)(𝑚𝑜𝑑 𝑛) ≡ (− 𝑎)(𝑚𝑜𝑑 𝑛) + 𝑎(𝑚𝑜𝑑 𝑛) ≡ 0(𝑚𝑜𝑑 𝑛)

must exist a unique additive inverse for all a in .(− 𝑎) ℤ/𝑛ℤ

vi. To prove: If , then: a + b a + c⇒ b c and b + a c + a⇒ b c.∀𝑎, 𝑏, 𝑐 ∈ ℤ/𝑛ℤ ≡ ≡ ≡ ≡
This can alternatively be written as: a + b a + c (mod n)⇒ b c (mod n) and b + a c + a≡ ≡ ≡
⇒b c (mod n).≡

a + b a + c (mod n) (given)≡
=> n | (a + b) – (a + c) (byM1)
=> (a + b) – (a + c) = nk for some k (by divisibility)∈ ℤ



=> (a + b) + (– a – c) = nk (by I4)
=> (a + –a) + (b – c) = nk (by I2, I3)
=> (0) + (b – c) = nk (by I7)
=> (b – c) = nk (by I5)
=> n | (b – c) (by divisibility)
=> b c (mod n) (byM1)≡

and: b + a c + a (mod n) (given)≡
=> n | (b + a) – (c + a) (byM1)
=> (b + a) – (c + a) = nk for some k (by divisibility)∈ ℤ
=> (b + a) + (– c – a) = nk (by I4)
=> (b + – c) + (a – a) = nk (by I2, I3)
=> (b – c) + (0) = nk (by I7)
=> (b – c) = nk (by I5)
=> n | (b – c) (by divisibility)
=> b c (mod n) (byM1)≡

Altogether, the six properties (i) through (vi) are true, proving proposition 2. ◻

A.2.2. Multiplication in ℤ/𝑛ℤ
Let’s now verify if multiplication is a binary operation in modulo n systems.ℤ

In modulo 2 ( ):ℤ ℤ/2ℤ
For , the Cayley table for multiplication is:ℤ/2ℤ = {0, 1}

· 0 1

0 0 0

1 0 1

Is multiplication a binary operation in ?ℤ/2ℤ

A.1.2 R1 R2 R3

Yes/No Yes Yes Yes

Therefore, yes, multiplication is a binary operation in .ℤ/2ℤ



What properties of binary operations does multiplication exhibit in ?ℤ/2ℤ

A.1.2 P1 P2 P3 P4 P5 P6 P7 P8

Yes/No Yes Yes Yes Yes (over
‘+’)

Yes (1) Selectively
(yes if a =
1)

No (but 0,1 are
idempotent)

Selectively
(yes if a = 1)

In modulo 3 ( ):ℤ ℤ/3ℤ
For , the Cayley table for multiplication is:ℤ/3ℤ = {0, 1, 2}

· 0 1 2

0 0 0 0

1 0 1 2

2 0 2 1

Is multiplication a binary operation in ?ℤ/3ℤ

A.1.2 R1 R2 R3

Yes/No Yes Yes Yes

Therefore, yes, multiplication is a binary operation in .ℤ/3ℤ

What properties of binary operations does multiplication exhibit in ?ℤ/3ℤ

A.1.2 P1 P2 P3 P4 P5 P6 P7 P8

Yes/No Yes Yes Yes Yes (over
‘+’)

Yes (1) Selectively
(yes if a =
1,2)

No (but 0,1 are
idempotent)

Selectively
(yes if a =
1,2)

In modulo 4 ( ):ℤ ℤ/4ℤ
For , the Cayley table for multiplication is:ℤ/4ℤ = {0, 1, 2, 3}

· 0 1 2 3

0 0 0 0 0

1 0 1 2 3



· 0 1 2 3

2 0 2 0 2

3 0 3 2 1

Is multiplication a binary operation in ?ℤ/4ℤ

A.1.2 R1 R2 R3

Yes/No Yes Yes Yes

Therefore, yes, multiplication is a binary operation in .ℤ/4ℤ

What properties of binary operations does multiplication exhibit in ?ℤ/4ℤ

A.1.2 P1 P2 P3 P4 P5 P6 P7 P8

Yes/No Yes Yes Yes Yes (over
‘+’)

Yes (1) Selectively
(yes if a =
1,3)

No (but 0,1 are
idempotent)

Selectively
(yes if a = 1,3)

In modulo 5 ( ):ℤ ℤ/5ℤ
For , the Cayley table for multiplication is:ℤ/5ℤ = {0, 1, 2, 3, 4}

· 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Is multiplication a binary operation in ?ℤ/5ℤ

A.1.2 R1 R2 R3

Yes/No Yes Yes Yes

Therefore, yes, multiplication is a binary operation in .ℤ/5ℤ



What properties of binary operations does multiplication exhibit in ?ℤ/5ℤ

A.1.2 P1 P2 P3 P4 P5 P6 P7 P8

Yes/No Yes Yes Yes Yes (over
‘+’)

Yes
(1)

Selectively (yes if a
= 1,2,3,4)

No (but 0,1 are
idempotent)

Selectively (yes if
a = 1,2,3,4)

In modulo n ( ):ℤ ℤ/𝑛ℤ
For , the Cayley table for multiplication is:ℤ/𝑛ℤ = {0, 1, 2, 3,  .  .  .,  (𝑛 − 1)}

· 0 1 2 3 ... n – 1

0 0 0 0 0 ... 0

1 0 1 2 3 ... n – 1

2 0 2 4 6 ... 2n – 2

3 0 3 6 9 ... 3n – 3

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

…
…
…

.

.

.

n – 1 0 n – 1 2n – 2 3n – 3 ... n 2–2n+1

Proposition 3.Multiplication is a binary operation in for any integer n > 0.ℤ/𝑛ℤ

Proof:
In order to prove the above proposition we need to prove that multiplication in adheres to theℤ/𝑛ℤ
below principles:

i. It must take exactly two elements from as input.ℤ/𝑛ℤ
ii. When applied to the two input elements, it must yield a single, unique output
iii. It must exhibit closure.

By def n of multiplication in modular arithmetics (see M3 in section A.1.4.):

)𝑥(𝑚𝑜𝑑 𝑛) · 𝑦(𝑚𝑜𝑑 𝑛) ≡ (𝑥𝑦) (𝑚𝑜𝑑 𝑛
From this it can be observed that multiplication in has exactly two inputs from the set.ℤ/𝑛ℤ
Therefore, (i) is true.



Now, by division algorithm, we can write:
where𝑥𝑦 =  𝑛𝑞 + 𝑟 0 ≤ 𝑟 < 𝑞

Takingmod n on both sides:
(by M1)(𝑥𝑦)(𝑚𝑜𝑑 𝑛) ≡ 𝑟 (𝑚𝑜𝑑 𝑛)

Then:
)𝑥(𝑚𝑜𝑑 𝑛) · 𝑦(𝑚𝑜𝑑 𝑛) ≡ 𝑟 (𝑚𝑜𝑑 𝑛

This shows that if x, y then xy and thus, multiplication in is closed. This∈ ℤ/𝑛ℤ ∈ ℤ/𝑛ℤ ℤ/𝑛ℤ
shows that (iii) is true.

Additionally, since the division algorithm states that r is unique for every (xy), n and q, )𝑟 (𝑚𝑜𝑑 𝑛
and in turn is also unique for every x, y. Therefore, showing that (ii) is true as𝑥(𝑚𝑜𝑑 𝑛) · 𝑦(𝑚𝑜𝑑 𝑛)
well.

Altogether, we can say multiplication is a binary operation in . ◻ℤ/𝑛ℤ

Proposition 4.Multiplication adheres to the following properties of binary operations in (forℤ/𝑛ℤ
any integer n > 1):

i. Closure: ∀𝑎, 𝑏 ∈ ℤ/𝑛ℤ ,  𝑎𝑏 ∈ ℤ/𝑛ℤ
ii. Associativity: .∀𝑎, 𝑏, 𝑐 ∈ ℤ/𝑛ℤ , (𝑎𝑏)𝑐 ≡ 𝑎(𝑏𝑐)
iii. Commutativity: .∀𝑎, 𝑏 ∈ ℤ/𝑛ℤ , 𝑎𝑏 ≡ 𝑏𝑎
iv. Distributivity over addition: and∀𝑎, 𝑏, 𝑐 ∈ ℤ/𝑛ℤ , (𝑎 + 𝑏)𝑐 ≡ 𝑎𝑐 + 𝑏𝑐

.𝑐(𝑎 + 𝑏) ≡ 𝑐𝑎 + 𝑐𝑏
v. Existence of multiplicative identity: There is a unique element such that1 ∈ ℤ/𝑛ℤ

.∀𝑎 ∈ ℤ/𝑛ℤ , 𝑎 · 1 ≡ 1 · 𝑎 ≡ 𝑎
vi. Selective existence of multiplicative inverse: and∀𝑎 ∈ ℤ/𝑛ℤ 𝑔𝑐𝑑 (𝑎, 𝑛) = 1,∃! 𝑎' ∈ ℤ/𝑛ℤ

such that .𝑎 · 𝑎' ≡ 𝑎' · 𝑎 ≡ 1
vii. Selective cancellation: If and we have:∀𝑎, 𝑏, 𝑐 ∈ ℤ/𝑛ℤ 𝑔𝑐𝑑 (𝑎, 𝑛) = 1,

ab ac⇒ b c and ba ca⇒ b c≡ ≡ ≡ ≡

Proof:
i. To prove: .∀𝑎, 𝑏 ∈ ℤ/𝑛ℤ ,  𝑎 + 𝑏 ∈ ℤ/𝑛ℤ



See proof of proposition 3.

ii. To prove: .∀𝑎, 𝑏, 𝑐 ∈ ℤ/𝑛ℤ , (𝑎𝑏)𝑐 ≡ 𝑎(𝑏𝑐)
This can alternatively be written as: (𝑎𝑏)𝑐 ≡ 𝑎(𝑏𝑐)(𝑚𝑜𝑑 𝑛).
or: [𝑎(𝑚𝑜𝑑 𝑛) · 𝑏(𝑚𝑜𝑑 𝑛)] · 𝑐(𝑚𝑜𝑑 𝑛) ≡ 𝑎(𝑚𝑜𝑑 𝑛) · [𝑏(𝑚𝑜𝑑 𝑛) · 𝑐(𝑚𝑜𝑑 𝑛)].

Let . Then:𝑎, 𝑏, 𝑐 ∈ ℤ
[ [ (by M3)𝑎(𝑚𝑜𝑑 𝑛) · 𝑏(𝑚𝑜𝑑 𝑛)] · 𝑐(𝑚𝑜𝑑 𝑛) ≡ (𝑎𝑏)(𝑚𝑜𝑑 𝑛)] · 𝑐(𝑚𝑜𝑑 𝑛)

(by M3)≡ [(𝑎𝑏)𝑐](𝑚𝑜𝑑 𝑛)
(by I2)≡ [𝑎(𝑏𝑐)](𝑚𝑜𝑑 𝑛)

(by M3)≡ 𝑎(𝑚𝑜𝑑 𝑛) · [(𝑏𝑐)(𝑚𝑜𝑑 𝑛)]
(by M3)≡ 𝑎(𝑚𝑜𝑑 𝑛) · [𝑏(𝑚𝑜𝑑 𝑛) · 𝑐(𝑚𝑜𝑑 𝑛)]

iii. To prove: .∀𝑎, 𝑏 ∈ ℤ/𝑛ℤ , 𝑎𝑏 ≡ 𝑏𝑎
This can alternatively be written as: 𝑎𝑏 ≡ 𝑏𝑎(𝑚𝑜𝑑 𝑛).
or: 𝑎(𝑚𝑜𝑑 𝑛) · 𝑏(𝑚𝑜𝑑 𝑛) ≡ 𝑏(𝑚𝑜𝑑 𝑛) · 𝑎(𝑚𝑜𝑑 𝑛).

Let . Then:𝑎, 𝑏 ∈ ℤ
(by M3)𝑎(𝑚𝑜𝑑 𝑛) · 𝑏(𝑚𝑜𝑑 𝑛) ≡ [𝑎 · 𝑏](𝑚𝑜𝑑 𝑛)
(by I3)≡ [𝑏 · 𝑎](𝑚𝑜𝑑 𝑛)
(by M3)≡ 𝑏(𝑚𝑜𝑑 𝑛) · 𝑎(𝑚𝑜𝑑 𝑛)

iv. To prove: .∀𝑎, 𝑏, 𝑐 ∈ ℤ/𝑛ℤ , (𝑎 + 𝑏)𝑐 ≡ 𝑎𝑐 + 𝑏𝑐 𝑎𝑛𝑑 𝑐(𝑎 + 𝑏) ≡ 𝑐𝑎 + 𝑐𝑏
This can alternatively be written as: and (𝑎 + 𝑏)𝑐 ≡ 𝑎𝑐 + 𝑏𝑐 (𝑚𝑜𝑑 𝑛)

.𝑐(𝑎 + 𝑏) ≡ 𝑐𝑎 + 𝑐𝑏(𝑚𝑜𝑑 𝑛)
or: and [𝑎(𝑚𝑜𝑑 𝑛) + 𝑏(𝑚𝑜𝑑 𝑛)] · 𝑐(𝑚𝑜𝑑 𝑛) ≡ 𝑎𝑐 (𝑚𝑜𝑑 𝑛) + 𝑏𝑐 (𝑚𝑜𝑑 𝑛)

.𝑐(𝑚𝑜𝑑 𝑛) · [𝑎(𝑚𝑜𝑑 𝑛) + 𝑏(𝑚𝑜𝑑 𝑛)] ≡ 𝑐𝑎 + 𝑐𝑏(𝑚𝑜𝑑 𝑛)

Let . Then:𝑎, 𝑏, 𝑐 ∈ ℤ
(by M3)[𝑎(𝑚𝑜𝑑 𝑛) + 𝑏(𝑚𝑜𝑑 𝑛)] · 𝑐(𝑚𝑜𝑑 𝑛) ≡ [(𝑎 + 𝑏)𝑐](𝑚𝑜𝑑 𝑛)

(by I4)≡ [𝑎𝑐 + 𝑏𝑐](𝑚𝑜𝑑 𝑛)
(by M3)≡ 𝑎𝑐(𝑚𝑜𝑑 𝑛) + 𝑏𝑐(𝑚𝑜𝑑 𝑛)

and:
(byM3)𝑐(𝑚𝑜𝑑 𝑛) · [𝑎(𝑚𝑜𝑑 𝑛) + 𝑏(𝑚𝑜𝑑 𝑛)] ≡ [𝑐(𝑎 + 𝑏)](𝑚𝑜𝑑 𝑛)

(by I4)≡ [𝑐𝑎 + 𝑐𝑏](𝑚𝑜𝑑 𝑛)
(by M3)≡ 𝑐𝑎(𝑚𝑜𝑑 𝑛) + 𝑐𝑏(𝑚𝑜𝑑 𝑛)



v. To prove: There is a unique element such that1 ∈ ℤ/𝑛ℤ ∀𝑎 ∈ ℤ/𝑛ℤ , 𝑎 · 1 ≡ 1 · 𝑎 ≡ 𝑎
.
This can alternatively be written as: 𝑎 · 1 ≡ 1 · 𝑎 ≡ 𝑎 (𝑚𝑜𝑑 𝑛).
or: 𝑎(𝑚𝑜𝑑 𝑛) · 1 ≡ 1 · 𝑎(𝑚𝑜𝑑 𝑛) ≡ 𝑎(𝑚𝑜𝑑 𝑛).

Let . Then:𝑎 ∈ ℤ
(from part iii) 𝑎(𝑚𝑜𝑑 𝑛) · 1 ≡ 1 · 𝑎(𝑚𝑜𝑑 𝑛)

and: (byM3) 𝑎(𝑚𝑜𝑑 𝑛) · 1 ≡ [𝑎 · 1](𝑚𝑜𝑑 𝑛)
(by I6)≡ [𝑎](𝑚𝑜𝑑 𝑛)

Combining both: 𝑎(𝑚𝑜𝑑 𝑛) · 1 ≡ 1 · 𝑎(𝑚𝑜𝑑 𝑛) ≡ 𝑎(𝑚𝑜𝑑 𝑛).

Let’s assume for contradiction that more than one multiplicative identity in and let∃ ℤ/𝑛ℤ
them be and . Then for all a :𝑒

1
𝑒

2
∈ ℤ/𝑛ℤ

a (mod n) a (mod n)· 𝑒
1
≡

Since , substituting a = , we get:𝑒
2

∈ ℤ/𝑛ℤ 𝑒
2

(mod n)𝑒
2

· 𝑒
1
≡ 𝑒

2

But since is also an multiplicative identity,𝑒
2

(mod n)𝑒
2

· 𝑒
1
≡ 𝑒

1

is also true.

Equating both of the above equations we get:
(mod n)𝑒

1
≡ 𝑒

2

which is a contradiction. Therefore, multiplicative identity in is unique and sinceℤ/𝑛ℤ
is true, the multiplicative identity must be only𝑎(𝑚𝑜𝑑 𝑛). 1 ≡ 1. 𝑎(𝑚𝑜𝑑 𝑛) ≡ 𝑎(𝑚𝑜𝑑 𝑛)

1.

vi. To prove: , such that i� .∀𝑎 ∈ ℤ/𝑛ℤ ∃! 𝑎' ∈ ℤ/𝑛ℤ 𝑎 · 𝑎' ≡ 𝑎' · 𝑎 ≡ 1 𝑔𝑐𝑑 (𝑎, 𝑛) = 1
This can alternatively be written as: 𝑎 · 𝑎' ≡ 𝑎' · 𝑎 ≡ 1 (𝑚𝑜𝑑 𝑛).

Let . Then:𝑎 ∈ ℤ
𝑎 · 𝑎'≡ 1 (𝑚𝑜𝑑 𝑛)

– 1 (byM1)𝑛 | (𝑎 · 𝑎')



for some k (by divisibility)(𝑎 · 𝑎') – 1 = 𝑛𝑘 ∈ ℤ
(by I1, I2, I3, I7)(𝑎 · 𝑎') − 𝑛𝑘 =  1

Since , we can say is of the form of a linear Diophantine𝑎, 𝑘, 1 ∈ ℤ (𝑎 · 𝑎') − 𝑛𝑘 =  1

equation. According to the def n of linear Diophantine equations, there exists a solution for
this particular equation i� . However, we know that the only factor of 1 is 1 itself𝑔𝑐𝑑 (𝑎, 𝑛)|1
and therefore, the equation will have a solution i� = 1.(𝑎 · 𝑎') − 𝑛𝑘 =  1 𝑔𝑐𝑑 (𝑎, 𝑛)

Combining this and (from part iii), we can say that , there exists𝑎 · 𝑎' ≡ 𝑎' · 𝑎 ∀𝑎 ∈ ℤ/𝑛ℤ
such that i� .𝑎' ∈ ℤ/𝑛ℤ 𝑎 · 𝑎' ≡ 𝑎' · 𝑎 ≡ 1 𝑔𝑐𝑑 (𝑎, 𝑛) = 1

Let’s assume for contradiction that more than one additive inverse for a and let∃ ∈ ℤ/𝑛ℤ
them be and . Then:𝑎' 𝑎''

and …(i)𝑎 · 𝑎' ≡ 1 (𝑚𝑜𝑑 𝑛) 𝑎 · 𝑎'' ≡ 1 (𝑚𝑜𝑑 𝑛)
We know that:

1 (mod n) (from part v)𝑎' ≡ 𝑎' ·
(mod n) (from eq. (i))𝑎' ≡ 𝑎' · (𝑎 · 𝑎'')
(mod n) (by part ii and iii)𝑎' ≡ (𝑎 · 𝑎') · 𝑎''

(mod n) (from eq. (i))𝑎' ≡ 1 · 𝑎'' 
(mod n) (from part v)𝑎' ≡ 𝑎'' 

which is a contradiction. Therefore, multiplicative inverse for a in is unique if it exists.ℤ/𝑛ℤ
Altogether, we can say, , s.t. i�∀𝑎 ∈ ℤ/𝑛ℤ ∃! 𝑎' ∈ ℤ/𝑛ℤ 𝑎 · 𝑎' ≡ 𝑎' · 𝑎 ≡ 1

.𝑔𝑐𝑑 (𝑎, 𝑛) = 1

vii. To prove: If and then: ab ac⇒ b c and ba ca⇒ b∀𝑎, 𝑏, 𝑐 ∈ ℤ/𝑛ℤ 𝑔𝑐𝑑 (𝑎, 𝑛) = 1, ≡ ≡ ≡
c.≡

This can alternatively be written as: ab ac (mod n) ⇒ b c (mod n) and ba ca⇒ b c≡ ≡ ≡ ≡
(mod n).

implies that a and n are co-prime ie. they have no other common factor than𝑔𝑐𝑑 (𝑎, 𝑛) = 1
1.

ab ac (mod n) (given)≡
=> n | (ab) – (ac) (by M1)
=> (ab) – (ac) = nk for some k (by divisibility)∈ ℤ



=> a(b – c) = nk (by I4)
=> n | a(b – c) (by divisibility)

Therefore, since n | a(b – c) and , we can infer that (b – c) must be an integer𝑔𝑐𝑑 (𝑎, 𝑛) = 1
multiple of n ie. n | (b – c). This implies:

n | (b – c)
=> b c (mod n) (by M1)≡

and: ba ca (mod n) (given)≡
=> n | (ba) – (ca) (by M1)
=> (ba) – (ca) = nk for some k (by divisibility)∈ ℤ
=> (b – c)a = nk (by I4)
=> n | (b – c)a (by divisibility)

Therefore, since n | (b – c)a and , we can infer that (b – c) must be an integer𝑔𝑐𝑑 (𝑎, 𝑛) = 1
multiple of n ie. n | (b – c). This implies:

n | (b – c)
=> b c (mod n) (by M1)≡

Altogether, the seven properties (i) through (vii) are true, proving proposition 4. ◻

A.3. Conclusion
Through this project, we have identi�ed that both addition and multiplication are indeed binary
operations under and all number systems where and .ℤ ℤ/𝑛ℤ 𝑛 ∈ ℤ 𝑛 > 1

We have also identi�ed and proved the properties of binary operation displayed by addition and
multiplication in . Here is a compilation of all the observations made regarding the properties:ℤ/𝑛ℤ 

Properties of addition ‘+’

+ Binary? P1 P2 P3 P4 P5 P6 P7 P8

ℤ/2ℤ Yes Yes Yes Yes No Yes (0) Yes No (but 0 is
idempotent)

Yes



ℤ/3ℤ Yes Yes Yes Yes No Yes (0) Yes No (but 0 is
idempotent)

Yes

ℤ/4ℤ Yes Yes Yes Yes No Yes (0) Yes No (but 0 is
idempotent)

Yes

ℤ/5ℤ Yes Yes Yes Yes No Yes (0) Yes No (but 0 is
idempotent)

Yes

... ... ... ... ... ... ... ... ... ...

ℤ/𝑛ℤ Yes Yes Yes Yes No Yes (0) Yes No (but 0 is
idempotent)

Yes

Properties of multiplication ‘ ’·

· Binary? P1 P2 P3 P4 P5 P6 P7 P8

ℤ/2ℤ Yes Yes Yes Yes Yes (over
‘+’)

Yes
(1)

Selectively
(yes if a = 1)

No (but 0,1 are
idempotent)

Selectively
(yes if a = 1)

ℤ/3ℤ Yes Yes Yes Yes Yes (over
‘+’)

Yes
(1)

Selectively
(yes if a =
1,2)

No (but 0,1 are
idempotent)

Selectively
(yes if a =
1,2)

ℤ/4ℤ Yes Yes Yes Yes Yes (over
‘+’)

Yes
(1)

Selectively
(yes if a =
1,3)

No (but 0,1 are
idempotent)

Selectively
(yes if a =
1,3)

ℤ/5ℤ Yes Yes Yes Yes Yes (over
‘+’)

Yes
(1)

Selectively
(yes if a =
1,2,3,4)

No (but 0,1 are
idempotent)

Selectively
(yes if a =
1,2,3,4)

... ... ... ... ... ... ... ... ... ...

ℤ/𝑛ℤ Yes Yes Yes Yes Yes (over
‘+’)

Yes
(1)

Selectively
(yes a i�
gcd(a,n)=1)

No (but 0,1 are
idempotent)

Selectively
(yes a i�
gcd(a,n)=1)
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Scalar and Vector Triple Products and their Geometrical Interpretation

Abstract:
This project explores the concept of triple products. It dives deep into the de�nition,

geometrical interpretation, calculation and properties of scalar and vector triple products. It also
introduces the concept of quadruple products.

B.1. Introduction:
In geometry and algebra, the triple product is a product of three 3-dimensional vectors, usually
Euclidean vectors. The name "triple product" is used for two di�erent products, the scalar-valued scalar
triple product and, less often, the vector-valued vector triple product. Before we explore these triple
products, let’s �rst de�ne some basic terms associated with the concept.

B.1.1. Scalar Product
The scalar product, also known as the dot product or inner product, is a mathematical operation
that takes two vectors and produces a scalar quantity. It is de�ned for vectors in Euclidean space
but can also be extended to other vector spaces.

For two vectors A = (A₁, A₂, A₃, ..., Aₙ) and B = (B₁, B₂, B₃, ..., Bₙ), the scalar product is calculated
as follows:

A · B = A₁B₁ + A₂B₂ + A₃B₃ + ... + AₙBₙ

Alternatively, it can be expressed using the summation notation as:

A · B = (Aᵢ Bᵢ)
𝑖=1

𝑛

∑

Scalar product can also be given as:
A · B = |A| |B| cos θ

where θ is the angle between A and B.

The result of the scalar product is a scalar value, not a vector, which represents the magnitude of
the projection of one vector onto the other. Geometrically, it represents the product of the
lengths of the vectors and the cosine of the angle between them.



The scalar product has several important properties, including commutativity (A · B = B · A),
linearity (A · (B + C) = A · B + A · C), and distributivity with scalar multiplication (k(A · B) =
(kA) · B = A · (kB)).

B.1.2. Vector Product
The vector product, also known as the cross product, is a mathematical operation that takes two
vectors in three-dimensional space and produces a new vector perpendicular to the original two
vectors. Unlike the scalar product, which results in a scalar, the vector product produces a vector.

For two vectors A = (A₁i +A₂j+ A₃k) and B = (B₁i+B₂j+ B₃k), the vector product is calculated as
follows:

A × B = (A₂B₃ - A₃B₂)i + (A₃B₁ - A₁B₃)j + (A₁B₂ - A₂B₁)k

Alternatively, it can be expressed using the determinant notation:

A × B = | i j k |
| A₁ A₂ A₃ |
| B₁ B₂ B₃ |

Where i, j, and k are the unit vectors along the x, y, and z axes, respectively.

The cross product A × B produces a new vector that is orthogonal (perpendicular) to both A
and B. The magnitude of the resulting vector is equal to the product of the magnitudes of A and
B multiplied by the sine of the angle between them. The resulting vector follows the right-hand
rule ie., if you point your right thumb in the direction of A and curl your �ngers towards B, the
direction your extended �ngers point in will be the direction of the resulting vector.

Geometrically, the cross product represents a vector that is perpendicular to the plane formed by
A and B. If you imagine extending A and B to form a parallelogram, the cross-product gives the
area of the parallelogram.

The vector product has several important properties, including anti-commutativity (A × B = -B
× A), linearity (A × (B + C) = A × B + A × C), and distributivity with scalar multiplication (k(A
× B) = (kA) × B = A × (kB)).



B.1.3. Some Other De�nitions
Here are some other de�nitions that is used ahead:

1. Parallelepiped: A parallelepiped is a three-dimensional geometric shape formed by six
parallelograms as its faces. It is a generalization of a parallelogram to three dimensions.

A parallelepiped has eight vertices, twelve edges, and six faces. Each face is a
parallelogram, and opposite faces are parallel and congruent. The edges of a
parallelepiped are shared by two faces, and the angles between adjacent faces are equal.

Three equivalent de�nitions of parallelepiped are
- a polyhedron with six faces (hexahedron), each of which is a parallelogram,
- a hexahedron with three pairs of parallel faces, and
- a prism of which the base is a parallelogram.

The shape of a parallelepiped is determined by the lengths of its three pairwise
non-parallel edges and the angles between them. These edges are usually referred to as
the base vectors or sides of the parallelepiped.

2. Vector Projection:
The vector projection of one vector over another vector is the length of the

shadow of the given vector over another vector. It is obtained by multiplying the
magnitude of the given vector with the cosine of the angle between the two vectors
ie.the projection of one vector u onto another vector v is given by:

𝑢 · 𝑣 
 |𝑢|

The resultant of a vector projection formula is a scalar value.



B.2. Scalar Triple Product:

B.2.1. De�nition
The scalar triple product (also called the mixed product, box product, or triple scalar product) is
de�ned as the dot product of one of the vectors with the cross product of the other two i.e., if a,
b, c are three vectors, then their scalar triple product is:

a · (b × c)

Symbolically, it is also written as:
[a b c] = [a, b, c] = a · (b × c).

B.2.2. Geometrical Interpretation
Proposition 1. Geometrically, the scalar triple product:

c · (a × b)
is the (signed) volume of the parallelepiped de�ned by the three vectors a, b, c.

Proof:

The volume of the parallelepiped is the base area times the height. The base area, as you know, is
the magnitude of the area of the parallelogram formed by vectors a and b which is equal to |a× b|
by def n of the vector product. Using the de�nition of cross product, we also know that a × b is



perpendicular to the plane containing vectors a and b. Then the height of the parallelepiped is
given by the projection of c along (a × b), which is equal to:

𝑐 · (𝑎×𝑏 )
 |𝑎× 𝑏|

Then:
Volume = Base Height·

=> Volume = |a × b| ·
𝑐 · (𝑎× 𝑏 )

 |𝑎× 𝑏|
=> Volume = ||𝑐 · (𝑎× 𝑏 )

which is the scalar triple product of the vectors. ◻

B.2.3. Calculation of Scalar Triple Product
Proposition 2. For any three vectors a = a1i + a2 j + a3k, b = b1i + b2 j + b3k, and c = c1i + c2j +
c3k, the62161ir scalar triple product is given by the determinant of the components of the three
vectors, ie:

Proof:
Using the de�nition of the cross product and dot product, we have:



◻

B.2.4. Properties of Scalar Triple Products
We have explored the concept of the scalar triple product along with its geometrical
interpretation and formula. Let us now go through some of its important properties for a better
understanding of the concept:

1. Swapping the positions of the operators without re-ordering the operands leaves the
triple product unchanged. This follows from the preceding property and the
commutative property of the dot product:

a · (b × c) = (b × c) · a

2. The scalar triple product is unchanged under a circular shift of its three operands (a, b,
c) due to the property of determinants:

3. Swapping any two of the three operands negates the triple product. This follows from
the circular-shift property and the anticommutativity of the cross product can be
shown using the property of determinants:



4. If any two vectors in the scalar triple product are equal or parallel, then its value is zero:

5. If a, b, c are coplanar, then a · (b × c) = 0 since b × c produces a vector that is
perpendicular to a and the scalar product of two perpendicular vectors is zero.
Geometrically, we can explain this as possible because the parallelepiped de�ned by
them would be �at and have no volume.

6. [λa b c] = [a λb c] = [a b λc] = λ [a b c], where λ is a real number because:
[λa b c] = (λa) · (b × c) = λ ·( a · (b × c)) = λ [a b c]
[a λb c] = [λb c a] = (λb) · (c × a) = λ ·( b · (c × a)) = λ [b c a] = λ [a b c]
[a b λc] = [λc a b] = (λc) · (a × b) = λ ·( c · (a × b)) = λ [c a b] = λ [a b c]

7. [(a + b) c d] = [a c d] + [b c d] because:
[(a + b) c d] = (a + b) · (c × d) = a · (c × d) + b · (c × d) = [a c d] + [b c d]

and [a (b+c) d] = [a b d] + [a c d] because:
[a (b+c) d] = a · ((b+c) × d) = a · ((b+c) × d) = a · (b× d + c × d) = a · (b× d) + a · (c × d)
= [a b d] + [a c d]

and [a b (c+d)] = [a b c] + [a b d] because:
[a b (c+d)] = a · (b × (c+d)) = a · ((b × c)+(b ×d)) = a · (b × c) + a · (b ×d) = [a b c] +
[a b d]0

8. The simple product of two triple products (or the square of a triple product), may be
expanded in terms of dot products:



B.3. Vector Triple Product:

B.3.1. De�nition and Geometric Interpretation
The vector triple product is de�ned as the cross product of one vector with the cross product of
the other two:

a × (b × c)

A vector triple product usually represents another vector geometrically. This is because the vector
product of two vectors gives a vector and the cross product of this vector with the third vector
also results in another vector.

B.3.2 Calculation of Vector Triple Product
Proposition 3. The vector cross-product can be solved by the below relationship (known as
triple product expansion, or Lagrange's formula):

Proof:



B.3.3. Properties of Vector Triple Product
1. Since scalar product is commutative, a × (b × c) = (a b)c – (a c)b = c(a b) – b(a c).· · · ·
2. Since vector product is anticommutative:

3. The vector triple product satis�es:
because: a × (b × c) + b × (c × a) + c × (a × b) = (a b)c – (a c)b + (b c)a – (b a)c + (c· · · · ·
a)b – (c b)a = (b c)a – (c b)a + (c a)b – (a c)b + (a b)c – (b a)c = (b c)a – (b c)a· · · · · · · · ·
+ (a c)b – (a c)b + (a b)c – (a b)c = 0 which is the Jacobi identity for the cross· · · ·
product.

B.4 Quadruple Products
Looking beyond the triple products, there also exists a concept called the quadruple products. It is a
product of four vectors in three-dimensional Euclidean space. The name "quadruple product" is used
for two di�erent products, the scalar-valued scalar quadruple product and the vector-valued vector
quadruple product.

B.4.1. Scalar Quadruple Product
The scalar quadruple product is de�ned as the dot product of two cross products:

(a × b) · (c × d)
where a, b, c, d are vectors in three-dimensional Euclidean space. It can be evaluated using the
identity:

(a × b) · (c × d) = (a c)(b d) – (a d)(b c)· · · ·
or by using the determinant:

B.4.2. Vector Quadruple Product
The vector quadruple product is de�ned as the cross product of two cross products:

(a × b) × (c × d)
where a, b, c, d are vectors in three-dimensional Euclidean space. It can be evaluated using the
identity:

(a × b) × (c × d) = [a b d]c – [a b c]d
where [a b c] = a · (b × c).



B.5 Conclusion:
In addition to their mathematical elegance, triple and quadruple products have numerous practical
applications in various �elds. Here are a few notable examples:

1. Physics andMechanics: In physics, the scalar triple product helps calculate the work done by a
force in moving an object, and the vector triple product is essential for determining torque and
angular momentum. These concepts are fundamental in studying rotational motion, rigid
bodies, and the behavior of physical systems.

2. Geometry and Graphics: In computer graphics, the vector triple product is used to calculate
surface normals, which determine how light interacts with 3D objects, leading to realistic
shading and rendering e�ects. In geometry, they help solve problems related to areas, volumes,
and determining the relationships between vectors and shapes.

3. Electromagnetism: In electromagnetic �eld theory, the vector triple product is used to
determine the direction and strength of magnetic �elds generated by current-carrying wires or
coils. This knowledge is vital for designing electric motors, transformers, and other
electromagnetic devices.

4. Engineering and Robotics: In structural engineering, the scalar triple product helps determine
the stability and equilibrium of structures, while the vector triple product is used to calculate
moments and forces acting on various components. In robotics, these concepts are utilized for
motion planning, kinematics, and controlling robot manipulators.

5. Fluid Dynamics: Triple products are used in �uid dynamics to analyze �ow patterns and
turbulence. They help calculate vorticity, which describes the rotation and circulation of �uid
particles. Understanding vorticity is crucial for studying �uid behavior, such as the formation
of eddies, �ow separation, and the interaction between �uids and solid objects.

These are just a few examples of the wide-ranging applications of triple and quadruple products. Their
utility extends to various scienti�c and engineering disciplines, allowing researchers, engineers, and
scientists to analyze complex systems, solve problems, and gain deeper insights into the physical world.

In conclusion, the concept of triple products, including scalar and vector triple products, provides
valuable mathematical tools for analyzing geometric relationships and solving problems in various
�elds. Additionally, the introduction of quadruple products expands our understanding of
higher-dimensional spaces. Overall, triple and quadruple products o�er elegant solutions and enhance
problem-solving capabilities in mathematics and physics.
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